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Abstract

CELA, CARLOS J. A Multiresolution Admittance Method for Large-Scale
Bioelectromagnetic Interactions. (Under the direction of Dr. Gianluca Lazzi.)

The admittance method is a numerical electromagnetic method in which the problem

space is discretely partitioned and its electrical properties represented in terms of an

admittance network created from the dielectric properties of the intervening materials. In

the presence of electromagnetic stimulation, the electrical response of the problem space

is approximated as the response of the admittance network to a stimulus representative

of the original source. In this work, a three-dimensional multiresolution admittance

method adequate for solving large scale bioelectromagnetic models is introduced. The

formulation is applied to modeling and simulation of retinal implantable stimulation

arrays and electrical injury by electroporation.

A distinctive advantage of using the admittance method for bioelectromagnetic sim-

ulations is that the method implies a representation of the system in terms of an electric

network. Examples of applications where this method can be of use are the modeling

of metal-electrolyte interfaces for implanted electrodes, and the simulation of electrical

behavior of neural cells using three-dimensional variations of the core-conductor model.

Because arbitrary circuital elements can be added to an admittance network to model

physiological behavior, the admittance method (and its dual, the impedance method)

can, in principle, be used to bridge the gap between tissue level and cellular level mod-

eling. Even though numerical treatments of bioelectromagnetic phenomena using the

admittance and impedance methods have been available for several decades, detailed

modeling of large biological structures has presented unique challenges, as the shapes of

anatomical structures tend to be complex, and frequently the sizes of features that must

be resolved are small compared to the overall size of the model. The multiresolution

algorithm presented in this dissertation addresses these issues by greatly reducing the

resulting voxel count while keeping an error comparable to the uniform resolution cases.

This is achieved by selectively maintaining high resolutions at material boundaries while

progressively increasing voxel size inside large homogeneous volumes. At difference of pre-

vious treatments of the admittance method, which solved static or single-frequency (fre-

quency domain) models, the proposed formulation can take advantage of time-stepping

to simulate the effect of excitation using signals of arbitrary waveforms.
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Chapter 1

Introduction

1.1 Background

The most elegant solution for an electromagnetic problem is the exact mathematical

solution. However, the complexity of closed-form solutions tends to grow faster than

the complexity of the problem itself, making it extremely difficult to use analytical ap-

proaches as a general method. Closed-form formulations to complex electromagnetic

problems can be unworkable for a variety of reasons, including difficulties handling com-

plex solution regions, complexity in expressing boundary conditions of mixed types or

boundary conditions that vary as a function of time, or having to account for anisotropic

or inhomogeneous mediums [1]. We resort then to approximating the problem solution

using systematic numerical treatments.

In this work, a numerical method to efficiently address a subset of electromagnetic

problems, namely those dealing with large scale biological models that have relatively

small detailed features and low frequency electromagnetic field interactions will be intro-

duced.

Beyond first order approximations, electromagnetic problems involving biological bod-

ies are complex. Biological bodies generally have complex geometries and large dimen-

sions compared to the minimum feature size to resolve, its tissues are heterogeneous, and

may present anisotropic dielectric properties. Moreover, if the models include metals

embedded inside living tissue, it is sometimes necessary to account for electrochemi-

cal reactions, not unlike an electrode-electrolyte reaction inside a chemical battery [2].

Further, the dielectric properties of tissue, and hence the response to electromagnetic

1
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stimuli may vary with tissue exposure history, field strength, frequency, current density,

and temperature [3, 4]. A range of bioelectromagnetic interactions occur at low frequen-

cies, as natural electric phenomena in cells, like neural activation, happen at frequencies

ranges usually not higher than hundreds of cycles per second. Since the wavelength

of signals at these low frequencies is much larger than the size of the entire model, the

phase of the excitation signal can be considered constant across the entire problem space.

In addition, the secondary magnetic fields caused by the currents inside the model are

considered negligible. This approximation, known as the quasistatic approximation, is

usually considered valid for frequencies up to tens of megahertz for models of the human

body.

A general electromagnetic numerical method, appropriate to work well within all of

these constraints, will be presented in Chapter 3; its use will be introduced in the context

of two specific applications that cover a number of the issues that can be addressed

using numerical bioelectromagnetic methods. These applications are calculations for an

implanted retinal prosthesis to partially restore vision to people suffering from specific

degenerative diseases of the eye, and modeling the effects of electric trauma on skeletal

muscle tissue.

1.1.1 Retinal Prosthesis

Retinitis Pigmentosa and Age-related Macular Degeneration are degenerative diseases

that disable a large percentage of photoreceptor cells, while leaving the rest of the vi-

sual neural path with a degree of functionality. Implantable retinal prostheses allow for

partial restoration of some form of vision to patients blinded by photoreceptors loss; this

is achieved by using of systematic electrical stimulation of the surviving ganglion and

bipolar cells, replacing the functionality of the now damaged photoreceptor cells [5, 6].

There are multiple research efforts working on retinal implants [7, 8, 9, 10], and while

different configurations have been devised, this dissertation will address the case in which

an external camera and electronics capture and process a video signal, which is wirelessly

transmitted to an intraocular implant, where the signal is delivered as electrical pulses

to an epiretinal implanted electrode array, which, in time, excites the underlying retinal

neural tissue.

The electrical stimuli provided by the implanted electrode array must have enough

intensity to elicit visual percepts while at the same time be safe for prolonged human
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use. As implantable electrode arrays become denser and smaller with the purpose of

increasing resolution, more detailed anatomical models are needed to simulate electri-

cal interaction between each electrode and the surrounding living tissue. To answer the

question regarding what is the limit to miniaturize retinal electrode arrays, we need to

look at the anatomy of the retina. Since neighboring cone and bipolar cells are intercon-

nected, and each ganglion cell integrates the signal across the extent of its dendritic field,

determining visual acuity in a healthy retina is not as simple as counting the density

of rods and cones [11, 12]. Retinal cell density varies at different places in the retina,

being greatest at the fovea, a specialized area of high resolution particularly sensitive to

movement (early detection of movement is performed in the retina itself in mammalians).

Moving from fovea to periphery, ganglion cells show the greatest gradients in primates,

decreasing in number, but having larger dendritic field size the farther apart from the

center. Assuming the electrical stimulation takes place in the retinal ganglion cells, and

an hexagonal packing of ganglion cells in the retina, the Nyquist limit is λ =
√

3a, where

a is the spacing between neighboring ganglion cells and has a minimum value of 2-3µm.

For primate retinas, λ = 10µm [11]. This corresponds to about one minute of arc of

the visual field. The normal eye’s optic is diffraction-limited to filter out gratings with

period length smaller than λ. The same eye optical imperfections that work as a spatial

low-pass filter help spread a point stimulus to an average of 10 cones. This allows the

retina to detect subtle lateral shifts in the image by comparing outputs of individual

cones. It may be worth following this line of inquiry in future implanted devices, as at

the same resolution, the ability to detect motion may vary drastically depending on the

stimulation pattern used by the implant.

Currents and electric potentials induced in the retina by the implant are affected by

a number of parameters of the implanted stimulator array, including electrode size, po-

sition of current return, and distance from the electrodes to the target stimulation area.

All these parameters significantly influence the resulting charge injection. In Chapter 4,

the multiresolution admittance method formulation introduced in Chapter 3 is used on

different models of intraocular and extraocular retinal stimulation to determine electric

potentials, current density magnitude, and possible retinal areas where neural activation

could be achieved in the retina, using a numerical approximation of the activation func-

tion [13]. The human retina was modeled using a tissue-level layered model. This is a

good approximation if we assume that the retinal structure beyond the photoreceptors

is relatively healthy. However, it has been recently documented that retinal degenerative
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diseases trigger remodeling of the neural structures of the retina [14, 15], particularly in

advanced stages of the disease.

1.1.2 Electric Injury of Skeletal Muscle

It has been long known that the flow of large electric current through living tissue can

cause trauma. The process that leads to tissue damage is complex. However, it is

generally accepted that besides the thermal injuries caused by Joule heating [16, 17], lysis

by cellular membrane electroporation [18, 19] and electroconformational denaturation of

macromolecules (i.e. protein unfolding), affecting functioning of ionic channels in the

cellular membrane are tissue-damage mechanisms [20, 19, 21, 22]. Effects of electric

shock are frequency dependent [22]. While the cellular wall shields the cytoplasmic fluid

from lower frequency components of the electrical current, at high frequencies the cell

membrane is no longer an effective barrier to the passage of electrical current. Cell

size, cell geometry, and solid-volume ratio also affect the outcome of applying supra-

physiological electrical stimulation [17].

In Chapter 5, the multiresolution admittance method formulation introduced in Chap-

ter 3 is used to numerically determine the electric injury effects of a high-voltage electric

shock in skeletal muscle tissue of the human arm, including tissue impedance, currents

across the arm, electric field distribution, and cellular damage expressed as percentage

of lysed skeletal muscle cells.

1.2 Numerical Methods for Bioelectromagnetics

Many different numerical methods have been used for computing electric fields and cur-

rent densities at low frequencies in bioelectromagnetic problems. Most of them use finite

difference approximations, in which the problem is stated in terms of differential equations

derived from Maxwell equations, and derivatives are approximated as finite differences

between values at discrete points in the model. Some of the most used are:

1. Finite Difference Method (FD)

2. Finite-Difference Time-Domain method (FDTD)

3. Scalar Potential Finite Difference method (SPFD)
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4. Impedance Method (IM)

5. Admittance Method (AM)

A brief discussion of each method’s approach, strengths and weaknesses when used

to treat bioelectromagnetic models follows.

Finite Difference method (FD)

Originally introduced by Thom in 1928 as the squaring method [23], and widely used for

modeling a variety of physical behaviors tractable using differential equations, the FD has

been widely applied to solve electrostatic problems, by applying the Poisson and Laplace

equations. The general idea behind the FD method is to solve differential equations by

approximating them using a numerical finite difference equivalent, calculated by relating

the dependent variable at the point considered to the values at neighboring points. The

solution of a problem using the FD method involves three steps [1]:

1. Meshing the problem space into a grid defined by nodes.

2. Aproximating the differential equation governing the problem by using the finite

difference equivalent.

3. Solving the finite difference equivalent accounting for the boundary conditions.

While straightforward in theory, the application of FD method to bioelectromagnetic

problems beyond electrostatics require numerical treatment that often depends on the

particular problem, and results are frequently computationally more expensive than the

alternative approaches.

Finite Difference Time Domain (FDTD) method

The FDTD method was first described by Yee in 1966 [24]. In the original formulation,

the problem space is subdivided using a regular grid, and a system formed by two de-

pendent Maxwell equations (1.1) (1.2) is approximated using finite differences. These

equations are iterated over time using two overlapped rectangular grids shifted half a cell

in space. While originally the problem spaces considered were enclosed by perfect con-

ductors, modern treatments manage free-space problems by including perfectly matched
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layers (PML) positioned at the boundaries of the model space, preventing outgoing waves

from reflecting back into the model [25, 26].

∂ ~B

∂t
+∇× ~E = 0 , ~B = µ ~H (1.1)

∂ ~D

∂t
−∇× ~H = J , ~D = ε ~E (1.2)

The major restrictions to the use of the FDTD method for detailed large models and

low frequencies are related to the stability criterion for the method (1.3).

1

c

√
∆x2 + ∆y2 + ∆z2 > ∆t (1.3)

In (1.3), c is the largest speed of light inside any material in the model, ∆x, ∆y,

and ∆z are grid spacings in the x̂, ŷ, and ẑ direction respectively, and ∆t is the time

interval in between iterations. While conceptually simple, low-frequency simulations for

large cell count models is usually computationally more expensive than SPFD and IM.

The stability criterion imposes a hard boundary in the maximum ∆t that can be used

depending on the resolution of the model, making FDTD computationally expensive

for high resolution models and low frequencies, both of which are requirements for our

intended applications.

There are many variations and optimizations for the FDTD method, including quasi-

static formulations appropriate for low-frequencies that consider decoupled static electric

and magnetic fields under certain conditions [27, 28]; these treatments are, however,

tailored to solutions of specific problems and computationally more expensive than al-

ternative methods as SPFD and IM.

Scalar potential finite difference (SPFD) method

The SPFD method was introduced by Dawson et al in 1996 [29, 30], and is a quasistat-

icscalar method, derived from incorporating the influence of an applied magnetic field

as a vector potential in the electric field. Starting from the differential expression of

the Maxwell-Faraday equation in frequency domain (1.4), the magnetic field ~B can be

expressed in terms of a magnetic vector potential ~A as (1.5).
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∇× ~E = −∂
~B

∂t
(1.4)

∇× ( ~E +
∂ ~A

∂t
) = 0 (1.5)

~E = −∇V (1.6)

If no free charges are initially present in the solution space, and considering (1.5) and

(1.6), ~E can be written as indicated in (1.7).

~E = −∇V − ∂ ~A

∂t
(1.7)

Substituting ~E from (1.7) into Gauss’ Law (1.8) results in (1.9), the scalar treatment

that is used for SPFD. A FD technique is then used to solve the system based on potentials

of neighbor cells and conductivities.

∇ · (σ ~E) = 0 (1.8)

∇ · (σ∇V ) = ∇ ·

(
−∂

~A

∂t

)
(1.9)

SPFD can readily be used to determine electric potentials and current density mag-

nitudes in the problem space. In addition, because it is a strictly scalar method, it is

computationally less expensive than the IM and AM [31]. The multiresolution method

introduced in Chapter 3 allows for efficient processing of large-scale models, and can in

principle be used with SPFD as well as other numerical methods including AM and IM.

At difference than the AM and IM, the SPFD method does not imply an intermediate

representation of the problem space in terms of an electric network. This takes away the

ability to augment the model by using lumped elements to approximate electrochemi-

cal or bioelectrical effects such as electrode-metal interfaces [32] or cellular membrane

bioelectrical behavior [33].
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Admittance Method (AM) and Impedance Method (IM)

The AM was introduced by Armitage in 1983 [34]. Shortly after, in 1984, Gandhi de-

scribed a complementary method, the IM [35]. While the AM and the IM numerical

treatments are slightly different, both methods are equivalent in approach, capabilities,

and results. This dissertation will generally refer to an admittance formulation, but the

discussion applies to both methods. As with SPFD, both AM and IM assume a quasi-

static approximation in which the secondary magnetic field caused by currents inside the

problem space is considered negligible. If a magnetic field is used for stimulation, an

additional assumption is made, namely that the incident magnetic field is not disturbed

by the materials in the model.

The general procedure for the admittance method involves partitioning a problem

space into smaller domains considered homogeneous, from which an equivalent impedance

network is derived. Each domain has a known conductivity value. While there is no

restriction regarding how the problem space is partitioned, in practice, using Cartesian

orthogonal directions helps make the implementation easier. While the impedance or

admittance matrix is consistently obtained from the dielectric properties of the underlying

materials and tissues, the numerical treatment is highly dependent on the stimulation

method used. When using magnetic fields to inject power, the system is set up by

applying Kirchoff Voltage Law, an impedance matrix is used, and the solution yields the

edge branch currents. When using current sources, the system is obtained by applying

Kirchoff Current Law, an admittance matrix is used, and the solution yields the node

voltages.

Taking as an example the common case of a three dimensional model regularly parti-

tioned as cuboid voxels using Cartesian coordinates, the equivalent admittance value for

each of the edges of voxel (i, j, k) along the x̂ direction, gi,j,kx , is approximated by (1.10).

gi,j,kx = σi,j,kx

∆y∆z

∆x
(1.10)

In (1.10), ∆x, ∆y, and ∆z are the lengths of the edges in the x̂, ŷ, and ẑ directions

respectively. The resulting electric network is expressed as an admittance matrix, and a

system having the form (1.11) is created.

G V = I (1.11)
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In (1.11), G is the admittance matrix, V is the voltage vector, and I is the current

vector. External stimulation is applied, often by means of a time-varying magnetic field

[34] or a continuous or sinusoidal ideal current source [36], and introduced in the numerical

formulation (1.11) in terms of the appropriate values in vectors V or I.

The linear system is solved, and the unknown scalar variable V or I obtained. Electric

field can be reconstructed from mesh geometry and scalar potential. Literature discusses

impedance method solutions in which static [37, 36] or frequency domain [35, 34, 38]

formulations are both adressed. In addition to these cases, a time-stepping transient

numerical solution is introduced in Chapter 3.

A distinctive advantage of the impedance and admittance methods is that since they

include an intermediate step in which the model is represented as an electrical net-

work, new electrical components can be arbitrarily included in the circuit to account for

electromagnetic effects not captured by the original model. This feature is valuable to

model complex bioelectrical behaviors, such as electrode-electrolyte interfaces between

implanted electrodes and neural tissue, which are often described in terms of circuital

lumped elements [32].

1.3 Organization of Dissertation

This dissertation introduces an efficient numerical treatment generic enough to be use-

ful for a variety of low frequency bioelectromagnetics problems, and presents examples

of its use in the context of two applications: retinal implants and the determination

of electroporation damage in skeletal muscles due to a high-voltage electric shock. A

brief introduction to the applications, as well as a short description of methods adequate

for numerical low-frequency numerical treatments of bioelectromagnetic problems was

introduced in this chapter. Chapter 2 reviews applications of the admittance method

to problems involving biological bodies, and briefly develops background concepts and

techniques that will be required for Chapter 4 and Chapter 5. Chapter 3 introduces a

formulation of a multiresolution variant of the admittance method suitable for analysis

of large computational models and biological bodies. Chapter 4 provides examples of

applications of the multiresolution admittance method to medical implantable devices,

focusing on the retinal prosthesis to restore partial vision to the blind. Chapter 5 intro-

duces applications of the multiresolution admittance method to model injury by cellular
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lysis caused by a high voltage electric shock. Finally, Chapter 6 presents conclusions.
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Chapter 2

The Admittance Method in

Bioelectromagnetic Problems

2.1 Introduction

Early on, most bioelectromagnetic applications of the admittance and impedance method

involved determining the effects of exposure to external electric or magnetic fields, with

interest focused on calculating the energy absorbed by tissue [34, 39, 35]. The models

contemplated biological tissues and air, and usually did not include metallic parts. More

recently, with the advent of electrically powered medical implants and advanced medical

imaging technologies based on electromagnetic fields, a host of new bioelectromagnetic

problems presenting unique challenges have arisen. Research focus has shifted towards

interdisciplinary efforts, in which not only the direct effects of electromagnetic fields,

such as power deposited, are determined, but also the biological responses, like the cell

recruitment volume [40], tissue impedance change [19], effects of electromagnetic stim-

ulation in eliciting responses from the nervous system [41, 37], and trauma caused to

living cells [42] are taken into account.

While modeling the human body with a relatively coarse resolution is often appro-

priate for dosimetry purposes, these new problems often require high level of detail in

anatomically correct models over large volumes. This significantly increases the process-

ing time and memory requirements. Further, the incorporation of metallic parts and

dielectrics inside living tissue, results in complex electrochemical interactions between

metal and electrolytes that add complexity to the treatment.
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In the following sections, a brief survey of applications of the admittance method

to bioelectromagnetic problems is presented, along with background information about

specific issues related to modeling bioelectromagnetic problems using the admittance

method.

2.2 The Admittance Method for Bioelectromagnetic

Problems

We will now briefly discuss some of the most common applications and formulations of

the impedance and admittance method in chronological order. The first reported de-

scription dates from 1983 [34], when Armitage introduced the admittance method, which

is equivalent to the impedance methods in terms of approach and results, but formulated

in terms of admittances. In his 1983 paper, Armitage calculated the instantaneous spe-

cific absortion rate (SAR) distribution inside a model of the human body when exposed

to radiofrequency (RF) electromagnetic waves. His model of the human body was de-

rived from CT scans, used a three dimensional grid with internode spacings of 0.5 cm

to 2 cm for different runs, and described the human torso in terms of seven tissues.

Capacitive electrodes and inductive coils were considered as the possible applicators. A

body phantom filled with an agar-based medium was used to experimentally verify the

resulting temperature increase predicted by the simulations. As for the formulation, it

used frequency domain description assuming a single frequency. Instantaneous SAR was

calculated as indicated in (2.1).

SAR =
P

D
=
| ~E|2

D
σ (2.1)

In (2.1), P is the instantaneous power dissipated per unit volume, D is the mass

density of the material, σ is the conductivity of the material, and ~E is the instantaneous

electric field obtained from the electric potential V and the magnetic vector potential ~A

as

~E = −∇V − ∂ ~A

∂t
(2.2)

In (2.2), the term ∂ ~A
∂t

accounts for the magnetically induced electric fields inside the

12



www.manaraa.com

model and is only considered in the case where inductive coils are used for stimulation.

The body tissue was modeled as a grid of cuboid cells, each interconnected at its ver-

texes with its neighbors; tissue conductivities are represented using admittance lumped

elements instead of impedances, and each admittance element has an associated voltage

source in series to account for the induced electric fields when using magnetic stimulation.

The voltage sources are not needed when the energy is delivered using the capacitive ap-

plicators. Armitage used successive overrelaxation (SOR) to solve the network. In order

to use the capacitive electrodes as voltage sources in the model, boundary conditions were

enforced by setting the voltages of the nodes attached to the electrodes to the desired

stimulation voltages, and having these nodes omitted from the iterations when solving

the linear system.

In 1984, Gandhi introduced a new formulation, this time using impedances to analyze

the power deposition in tissues in hyperthermia [35]. The frequencies considered were

13.56 MHz and 27.12 MHz. The model contemplated two-dimensional slices of a hu-

man torso obtained by scanning anatomic diagrams, having a resolution of 25× 32 cells.

In this particular application, it was noted that the impedance network converged much

faster than the equivalent finite difference approximation. In Gandhi’s formulation, tis-

sue conductivities are used to derive an equivalent lumped-element impedance network,

and power is introduced in the model by a harmonic homogeneous or spatially varying

magnetic field, which drive electromotive forces (EMF) in the impedance loops in the

model. The induced EMFs are calculated using Faraday’s law, and used to formulate a

linear system along with the impedance matrix. As in Armitage’s paper, the resulting

system is solved for branch currents using SOR. The SAR is subsequently calculated

using a finite difference approximation of the gradient of the electric potential obtained

from the impedance method solution. The precision of the method is verified against the

analytical solution for a similar problem using infinitely long concentric cylinders.

In 1985, Deford, a student of Gandhi, published an article in which in addition to the

two-dimensional slices of a realistic human torso, a three-dimensional cuboid model is

used to coarsely approximate a human body. The cuboid had the proportions of a man

standing in anatomical neutral position, was meshed to 9800 cells using an expanding

grid algorithm, and considered muscle, fat, and a thin skin layer at its surface [39]. Other

than the model, the formulation and verification are identical to Gandhi’s original paper

[35]. Deford noted in his article that the run time of the simulations was extremely

fast when using the impedance method compared to solving the same problem using the
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method of moments. In 1988, Orcutt used the impedance method to predict the power

absorbed by the human body when exposed to a nuclear magnetic resonance imaging

device [43]. As in Gandhi’s and Deford work, an impedance network was formed and

transformed to a linear system by describing Kirchoff voltage equations for a sufficient

number of planar loops in the network. The model used was the most sophisticated to

date, consisting of a complete three-dimensional human body meshed using cubic voxels

having 1.31 cm per side, and considering 15 different body tissues. The excitation used

was a 30 MHz magnetic field, polarized front to back of the model. The method was

verified against the analytical solution for a sphere having the dielectric properties of

muscle subjected to an external magnetic field.

In 2003, Eberdt presented a formulation that contemplated a two-dimensional multi-

resolution meshing algorithm and its extension to three-dimensions [36]. Eberdt briefly

discussed applications of the new meshing algorithm for very detailed anatomical struc-

tures. The same year, Nadeem used the impedance method for modeling electroconvul-

sive therapy (ECT) and transcranial magnetic stimulation (TMS) devices [44]. Nadeem’s

model was based on the head of the male dataset from the Visible Human project [45].

2.3 Modeling the Human Body with the Admittance

Method

For human anatomical models with resolution in the order of millimeters or more, full

male and female data sets are available, including the ones from National Library of

Medicine [45]. Models at these resolutions can be developed using modern medical imag-

ing techniques such as magnetic resonance. For higher resolution models, the model

data can be either interpolated from coarser datasets or computer generated. Models

used through this dissertation take were made using interpolation techniques to increase

spatial resolution, as well as computer generated models from geometrical anatomical

descriptions. In some of the applications presented in later chapters, both methods have

been merged using the geometrical models for the areas of fine detail and the interpo-

lated models for the bulk of the tissue, to establish adequate boundary conditions for the

simulations.

A discrete model made of cubic voxels can be generated from an anatomical geometric

description by periodically sampling the model space at the maximum resolution to be
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used. A homogeneous cubic voxel is considered around each sampled point. Each voxel is

characterized using a material index, and treated as a volume having homogeneous elec-

trical properties. One material index, usually number zero, is reserved for void volumes;

this allows for arbitrary culling of voxels in well known areas for performance purposes

(i.e. inside a perfect conductor), as the voxels assigned with material index zero are not

represented in the equivalent admittance network, and are assigned an arbitrary value

for the scalar electric potential during post-processing.

The presence of complex surfaces and fine structures intermingled with larger, ho-

mogeneous areas is characteristic of biological tissue. Compounding this, for certain

applications like the modeling of implanted devices, the size of the model tends to be

large compared to the anatomical details close to the area of interest. Using efficient

multiresolution meshing techniques, capable of adapting to preserve detail in the areas

of interest and reduce detail elsewhere is important to create realistic models that can

be processed using reasonable computational resources.

Figure 2.1: Two-dimensional uniform meshing (Left), and expanding grid meshing
(Right). Note the higher resolution at the top left of the expanding grid plot. The
expanding grid is more efficient in terms of computational resources, as it allows finer
resolutions in parts of the problem space at the expense of less precise results in other
portions of the model.

When using the admittance method, the problem space needs first to be discretely

partitioned; while any geometric space partition is acceptable in theory, in practice is con-
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venient if the partitioned model is represented in terms of a three-dimensional orthogonal

mesh or, equivalently, as a collection of voxels. In previous works, the meshing grid was

considered to be of uniform resolution [35][44], two-dimensional [36], or expanding [34].

Two-dimensional examples of uniform and expanding meshing grids are shown in Figure

2.1. Each of these approaches have advantages and drawbacks. For three-dimensional

models, assuming same unit voxel size for each method, uniform resolution meshes pro-

vides the most accurate results at a price of greatly increasing the required computational

resources used. Two-dimensional models are not always adequate for modeling complex

three-dimensional problems, but can provide a good approximation for certain symmet-

ric geometries using minimum resources. Expanding grids, while easy to implement, are

suboptimal because they tend to be highly non-local; an increase in the resolution of a

small part of the model increases the resolution on distant parts as well and, because of

this, if the problem requires multiple high-resolution sub-volumes, this quickly escalates

the computational resources needed. In addition, when using expanding grids, the error

of the numerical solution is larger in the portions of coarser resolution.

The alternative multiresolution meshing approach introduced in Chapter 3 creates

compact three-dimensional meshes for large models, consumes a small fraction of the

computational resources of the uniform resolution equivalent mesh, and allows for se-

lective increase of resolution in any number of desired sub-volumes. The algorithms for

meshing and network generation presented are inherently local; writing a parallel com-

puting implementation is trivial. The introduced formulation allows for resource-efficient

computation of large, complex, three-dimensional models and the use of arbitrary stim-

ulation waveforms using time-stepping.
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Chapter 3

A Three-Dimensional,

Time-Stepping, Multi-resolution

Admittance Method

3.1 Introduction

The basic procedure for the admittance method in three dimensions involves partitioning

a problem space into cuboid shaped voxels considered homogeneous. An equivalent

admittance network is then derived by placing network nodes on the vertexes of each

voxel, and lumped admittances along its edges. The equivalent lumped admittance value

for each edge is calculated from the averaged conductivity of the voxels that share that

edge. External stimulation is applied by means of a time-varying magnetic field [34] or

an ideal current source [36]. The resulting network is then solved for the voltage of each

node. Literature discusses impedance and admittance method solutions in which static

[37, 36] and frequency domain [35, 34, 31, 46, 38] formulations are presented. The lumped

element circuit approximation used is valid only under a quasistatic approximation: the

size of the model must be small compared to the wavelength of the excitation signal. In

addition, the secondary magnetic field caused by the currents flowing through the network

is considered negligible. While the quasistatic approximation prevents the method from

modeling electromagnetic wave propagation, it is a good approximation for low frequency

problems.

The admittance method variant introduced in the following sections presents two
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significant new features respect to the methods described in literature: First, a multi-

resolution three-dimensional meshing algorithm that creates compact meshes without

significantly increasing error is introduced. Secondly, a time-stepping formulation is used

to calculate transient behavior of models stimulated by arbitrary waveforms.

The steps for preparing and running a simulation using this multiresolution admit-

tance method treatment include discretization, multiresolution clustering, equivalent net-

work generation, network solving, and post-processing. Each of these steps is addressed

in order in the sections of this chapter.

3.1.1 Modeling and Discretization

To apply the multiresolution admittance method, a discrete model of the system to

simulate is required. The model must include geometry, electrical conductivity of each

material considered in the model, and a description of excitation sources.

Discretization

Each material present in the model to simulate is first assigned a unique material index.

Each material index has a conductivity value associated to it. The geometry of the

model is encoded by using a three-dimensional array and having each element of the

array representing a single cubic voxel and tagged using the appropriate material index.

Each of these cubic voxels will be referred hereafter as a unit voxel. Unit voxels are

considered homogeneous, but the constitutive material can be anysotropic. The edges of

each voxel are parallel to the x̂, ŷ, and ẑ directions of the Cartesian coordinate grid.

While there is no mathematical constraint that requires the partition of the space to

be in terms of cuboid voxels or to use a Cartesian coordinate grid, having an regular,

orthogonal decomposition of space is helpful to simplify the calculation of the associated

network later on. The size of the array is given by the maximum resolution of our model.

For instance, if the model describes a cubic portion of space of 6.4 cm per side at 1 mm

resolution, the discrete model will have 64× 64× 64 voxels; the three-dimensional array

used to encode this model will have the same number of elements.
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Frequency Dispersion Considerations

While the impedance method as described here does not directly account for frequency

dispersion, the following approaches can be used if the dielectric properties of the ma-

terials in our model vary significantly with frequency. First, if most of the power in the

excitation waveform is confined to a narrow frequency range, frequency domain analy-

sis for the excitation waveform can be performed and the dielectric properties for each

material in the model can be chosen close to the value of the maximum frequency com-

ponent; this is compatible with time-stepping transient solving. Second, if the excitation

waveform peaks at multiple frequency values, the system can be solved one time for each

peak present in the frequency domain, and the single-frequency results combined using

the superposition property of linear networks to obtain the final numerical results.

3.1.2 Multiresolution Clustering

Multiresolution meshing refers to the generation and use of a model in which space has

been divided into smaller sub-volumes (voxels) of different size, with the goal of saving

computational resources. While straightforward methods have been described for two-

dimensional models [36], their complexity increases substantially when attempting to

implement them in a three-dimensional space. Because of this, a different approach was

chosen. Instead of partitioning a large model into differently sized voxels, the volume

is first finely subdivided into voxels of the smallest size considered and then a multi-

resolution clustering algorithm is used to coarsen the resolution by selectively aggregating

neighbor voxels as shown in Figure 3.1.

Multiresolution clustering reduces the model’s voxel count by aggregating neighboring

voxels into larger voxels, keeping spatial resolution high in the areas close to material

boundaries, and progressively increasing the size of voxels at more homogeneous parts

of the model. The proposed algorithm is local, in the sense that voxels that are close

to each other are processed together, making a parallel computing implementation easy

to accomplish. The multiresolution schema works independently of the geometry of the

model.

The size of the model in all three dimensions must be powers of two. This does

not prevent us from using arbitrary model sizes, as the restriction can be fulfilled by

temporarily growing the dimensions as needed using voxels tagged with a specific ma-

terial number, so they can be stripped out after multiresolution clustering process has
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Figure 3.1: Applying the multiresolution clustering algorithm results in the normalized
cases above. The voxel reduction ratio obtained during multiresolution clustering varies
depending on model geometry and other constraints described in the Clustering Con-
straints section. Note how vertices are discarded during the clustering process, leading
to a reduced number of node equations in the equivalent electrical network.

completed.

A convention is adopted in which a voxel position is given by the coordinates of

its lower left back vertex. This way, a cubic voxel having sides of size one, with all

faces parallel to planes normal to the coordinate axes, and having a vertex at the point

(x = 0, y = 0, z = 0) and the diagonally opposite vertex at (x = 1, y = 1, z = 1) will be

said to have a position (0, 0, 0).

Clustering Constraints

The multiresolution clustering algorithm presented here keeps the size of the voxels next

to material boundaries at the unit size and progressively increases the size of voxels inside

larger homogeneous volumes in the model. While this approach is in general appropriate,

there are some cases in which further control of the clustering process is required. To

address this need, three types of geometric constraints are considered when clustering:
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Figure 3.2: Discretization procedure, using a 16 x 16 x 1 unit voxel grid for illustration
purposes. Three materials are considered in this example, tagged as 0, 1, and 2 respec-
tively. Note that a real model would have to further extend in the the ẑ direction to
properly account for boundary conditions. Starting from a representation of the model
(left), a regular cubic mesh is overlaid, and the center points of each voxel are sampled.
Voxels are then considered homogeneous, and different numbers are assigned to each
material (right). Dielectric properties are associated to the material number.

named nodes, sub-volumes, and guide points.

Named nodes are nodes that are guaranteed to appear in the final mesh. Since the

clustering algorithm removes nodes when adjoining voxels, as shown in Figure 3.1, named

nodes are used to ensure certain important nodes, as for instance the ground node, or a

current injection node, are not removed.

A sub-volume is a cuboid-shaped space partition inside the model in which a max-

imum voxel size is defined. The purpose of defining a sub-volume is to preserve high

spatial resolution inside that portion of the model during multiresolution clustering.

Sub-volumes are defined by specifying their location, size, and the maximum voxel size

allowed inside them.

A guide point is a rule that when applied to a point in the model, defines a constraint

on the voxel size of all the voxels as a function of a distance to the point. Guide points are

useful in cases where power is injected into the model at a single node, to help gradually

coarsen the resolution of the voxels while achieving a smooth current distribution. The

size versus distance function can be arbitrary; a polynomial function (3.2) has been used
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Figure 3.3: Multi-resolution clustering. Starting from the model of Figure 3.2, boundary
voxels are marked using a ’B’ character.(A), and a quadrant (octant, if in 3D) of size
S = 2 is swept through the span of the model (B), clustering voxels inside it that are
made of the same material, are not boundaries, and comply with the clustering constraints
described in the text (C). Clustering order in this example was first along x̂ and then
along ŷ. The size of the quadrant is doubled (D), and the operation is repeated (E).
When no more clustering is possible, the process is complete (F). Result is as shown in
Figure 3.4.
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Figure 3.4: Result after processing the model presented in Figure 3.2 using the multi-
resolution algorithm. The voxel count has been reduced by 55% compared to the uni-
formly meshed model. In larger realistic biological models, voxel count reductions on the
order of 80 percent are not uncommon.

for the different applications presented in Chapter 4 and Chapter 5. In (3.1), (x, y, z)

is the position of the guide point, and d is the distance from the current voxel position

(i, j, k). In (3.2), the two coefficients a and b define the maximum allowable voxel size s

for the voxel at (i, j, k). The effect of using guide points can be observed in Figure 3.5.

Multiple named nodes, sub-volumes, and guide points can be defined for a model to

constrain the maximum allowable sizes of each and every voxel in the model. A cross

section for a resulting multiresolution mesh of a concentric solid sphere and spherical

shell obtained using this algorithm is shown in Figure 3.5

d =
√

(x− i)2 + (y − j)2 + (z − k)2 (3.1)

s = bad+ bd2c (3.2)

Three-dimensional Multi-resolution Clustering Algorithm

The algorithm to create a multiresolution mesh from a uniform mesh by clustering con-

tiguous voxels may be described as follow:
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1. Initialization:

(a) If the model array size along any of the orthogonal axes is not a power of 2,

grow the array in that dimension up to a size that is power of 2, tagging the

newly added voxels with material= void.

(b) Sweep entire model array, marking voxels belonging to a material boundary,

that is, with its sides, edges or vertices in contact with a voxels of different

material, as boundary voxels (shown in Figure 3.3-A).

(c) Mark voxels at each named node as a boundary voxels. At least two named

nodes are always defined: one for the node that will be the electrical ground,

and one for each node in which a current is being injected into the model.

This guarantees that these nodes exist in the final model.

(d) Initialize variable S = 2. S represents the size of the side of the volume space

we are considering cluster in this iteration.

(e) Initialize constant M to the maximum allowable size given in terms of unit

voxels for any voxel in the model. M must be a power of 2. For instance,

setting M = 16 indicates that after clustering, the maximum size allowed for

any multiresolution voxel in the model is 16 unit voxels per side.

(f) (optional) One or more sub-volumes are defined by specifying size, position,

and maximum allowable voxel size inside their volume.

(g) (optional) One or more guide points are defined by specifying their position

and their a and b coefficients.

2. Recursive Clustering:

(a) Initialize i = S
2
, j = S

2
, and k = S

2

(b) Consider a cubic volume centered at (i, j, k), and having a side size of S unit

voxels. This volume can be sub-divided in eight octants, all of which share

the point (i, j, k).

(c) Any two voxels A and B inside the cubic volume considered in (a) can be joined

into a single voxel C if they comply with the all the following constraints:

i. A and B span one (or more) entire octant(s) of the sub-volume each.

ii. Both A and B are tagged with the same material index.
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iii. A and B share a common face.

iv. Neither A or B are marked as a boundary voxel.

v. Neither A or B share a vertex with any voxel whose smallest sized side is

smaller than the smallest side of A or B.

vi. The largest dimension of the voxel created by adjoining A and B along any

coordinate axis is less than or equal to any restriction in dimension spec-

ified at the origin point of the new voxel by M , a sub-volume definition,

or a guide point restriction.

(d) If step 2.(c) resulted in a join operation, apply step 2.(c) again. If not, continue

with step 2.(e) below. All the possible outcomes of step 2.(c) are shown in

Figure 3.1.

(e) A new position is calculated by incrementing either i, j, or k by a value of S.

The order of increment is not important, but the entire volume of the model

must be covered. If the entire model has been traversed, continue with step 3

below. Otherwise repeat steps from 2.(b).

3. If at least one clustering operation has occurred at step 2, double the value of S

and repeat step 2.

4. Remove all voxels tagged as material=void. Exit.

Two-dimensional Multi-resolution Clustering

The three-dimensional multiresolution clustering algorithm described in the previous

section can be applied to two-dimensional grids by reducing the number of dimensions

in the geometry by one degree, that is, by considering only two coordinate axis instead

of three, quadrants instead of octants, and voxel edges instead of voxel faces.

Figures 3.2, 3.3 and 3.4 illustrate a sample case in which two-dimensional multi-

resolution clustering is used.

3.1.3 Electric Network Generation

We will now to derive the topology of a lumped circuit element that is an approximate

electrical description of a single voxel in the model, and obtain the expressions to calculate
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Figure 3.5: Transversal slices of multiresolution mesh of a model of a spherical capacitor.
The top plot corresponds to a multiresolution mesh having a maximum voxel size of
M = 8. The bottom plot is the same case with the addition of two guide points at the
terminals of the device, at the center and upper left of the Figure respectively, defined
using (3.2) with a = 0.12 and b = 0. It can be observed how the mesh gradually coarsens
from the guide points. This has the effect of creating a smooth spread of the injected
current, lowering the numerical error.
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Figure 3.6: Equivalent circuit network topology. Network nodes are congruent with the
vertices of each voxel, and network impedances are connected between nodes along each
of the edges of each voxel. Each edge impedance accounts for modeling a quarter of the
voxel’s volume in one direction. If one edge is shared among two or more voxels, the edge
impedances for each participating voxel are combined in parallel, effectively averaging
dielectric properties for all voxels involved.

the different circuit components involved. In order to maintain a good spatial correlation

between the electric equivalent network and the original model, the circuital nodes are

placed in the vertices of each voxel. Since vertices are connected by edges, the lumped

circuital elements that will represent our model will be placed along the edges of the

voxels. This has the added advantage of performing an orthogonal decomposition of

the currents and fields, which will simplify vector reconstruction and will allow to use

linearity to determine the whole voxel equivalent circuit.

~J = σ ~E (3.3)

As illustrated in Figure 3.6, each edge impedance represents one quarter of a voxel in

a given direction. To determine the topology of the equivalent circuit for each edge, we

start from Ohm’s Law expressed as (3.3), where ~J denotes the current density vector, σ

the complex conductivity, and ~E the electric field. Note that in the more general case

of anisotropic material, the conductivity σ can be represented as a second rank tensor.

Considering only the components in the x̂ direction, and frequency domain, the complex
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conductivity of the material along x̂ can be expressed as a function of an impedance

(3.4), where Jx and Ex are respectively the current density and electric field components

in the x̂ direction, Zx is the equivalent edge impedance in the x̂ direction for a volume

spanning a quarter of the voxel, having a cross section of (∆y∆z) and a thickness of ∆x,

as illustrated in Figure 3.6.

(σx + jωεx) =
Jx

Ex

=
1

Zx

∆x

∆y∆z
(3.4)

Rearranging (3.4), the equivalent impedance for the edge can be written as (3.5) .

Zx =
1

(σx + jωεx)

∆x

∆y∆z

=

(
σx

∆y∆z

∆x
+ jωε

∆y∆z

∆x

)−1

(3.5)

Zx = (Admittance+ Susceptance)−1 (3.6)

From (3.5) we can see that the expression is of the type (3.6), describing the parallel

circuit of a resistor with a capacitor for the impedance associated with the edge. Having

each edge of each voxel accounting for the impedance of a quarter of the voxel in a given

direction, and using superposition property to overlap all three orthogonal coordinate

directions, we obtain the configuration shown in Figure 3.7.

The lumped element values for the resistor and capacitor for the edge impedance

depicted in Figure 3.6 can be calculated as shown in (3.7) and (3.8). When multiple

voxels share common nodes, there will be more than one edge running between two

nodes; this will be taken into account later by considering them in parallel when building

the impedance matrix to solve the linear system.
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Figure 3.7: Network generation. Each single voxel (A) is considered as a linear com-
position of three orthogonal components (B), and each edge impedance (C) models one
quarter of the voxel in a given direction. The complete model (D) is obtained by super-
position.

Rx =
1

σx

∆x

∆y∆z
(3.7)

Cx = εx
∆y∆z

∆x
(3.8)

Network Generation Algorithm

Generating the equivalent lumped-element circuit can then be accomplished by iterating

through each voxel of the model and calculating the equivalent R and C for each of its

12 edge impedances using (3.7) and (3.8). The equivalent circuit for the whole voxel is

built by connecting all the lumped circuital elements to the respective nodes, as shown

in Figure 3.7. Similarly, the equivalent network for the complete model is obtained by

considering all the voxels.

For the proposed solution methods, power is introduced in the model by current

injection into the appropriate nodes. Excitation signals other than current sources are

transformed into current sources. For instance, voltage sources can be accounted for

by adding a series source resistor and obtaining the Norton equivalent to produce an
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admittance in parallel to a current source. Similarly, if power is introduced into the

model by means of a varying magnetic field, this is reduced to an electromotive force using

Faraday’s Law, which in time is transformed to a current injection into the appropriate

nodes.

3.1.4 System Solution

Once the equivalent network is obtained, a linear system can be formed and solved for the

node voltages. Depending on the model and the excitation, three different formulations

are presented in the following sections, appropriate for static, frequency domain, and

time domain solutions of the problem.

3.1.5 Static Solution

The static solution constitutes the simplest case, in which all current sources are DC,

and all equivalent capacitances in the circuit are completely charged. Under these condi-

tions, capacitors are replaced by open circuits, and the network can be considered purely

resistive. Nodal analysis is used to create a suitable linear system, considering m nodes,

and excluding ground. The system is solved for the voltage value at each node.

G V = I (3.9)

The resulting linear system is of the form (3.9), where G is the sparse symmetric

admittance matrix representing the model’s admittance, V is the unknown voltage vector,

and I the vector describing the currents being injected at each node.

Forming the Admittance Matrix G

If the network has m + 1 nodes, G is the m ×m conductance matrix; each node of the

network is present in both the rows and the columns of the matrix. The ground node

is implicit. G is formed from the network resistors by using the following steps derived

from nodal analysis:

1. Nodes are sequentially labeled from 1 to m. Ground node is not counted.

2. All values of G are initialized to zero.
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3. For each pair of nodes (a,b):

(a) If a = b, and there are K resistances connected to the node:

Ga,b =
K∑
k=1

1

Rk

(b) If a 6= b, and the nodes have K resistances connected between them:

Ga,b = Gb,a = −
K∑
k=1

1

Rk

The resulting system will yield a sparse symmetric G matrix.

Forming the Current Vector I

The I current vector describes the independent current sources connected to the network.

These are the vehicle to inject energy into the model. There is one entry for each node

in the system, labeled from 1 to m.

1. Nodes are sequentially labeled from 1 to m, using the same order used in G. Ground

node is not counted.

2. All values of I are initialized to zero.

3. For each current source i having its positive terminal connected to node a and its

negative terminal connected to node b:

(a) If a is the ground node:

Ib = Ib − i

(b) If b is the ground node:

Ia = Ia + i

(c) If neither a or b are the ground node:

Ia = Ia + i

Ib = Ib − i
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Solving the Linear System

In order to minimize computer memory usage, it is desirable to keep the admittance

matrix sparse while solving the linear system; this makes direct methods such a Gaus-

sian elimination a poor choice for this problem. Some authors report using successive

overrelaxation (SOR) [34, 35, 39]. In our experience, Krylov sub-space iterative gradient-

descent methods have proved effective. The results presented in Chapter 4 and Chapter

5 use the bi-conjugate gradient method implementation from the IML++ library [47].

3.1.6 Frequency Domain Solution

Solving the system in frequency domain should be considered when the excitation wave-

form is sinusoidal or when the applied waveform is such that it can be reasonably approx-

imated by a small number of terms of a Fourier decomposition. In this case, the system

to solve will still have the form of (3.9), but G, V , and I will hold complex values to

account for magnitude and phase information. The admittance matrix G will be formed

using complex impedances instead of resistances as in the static solution.

G can be formed from the values of the capacitors and resistors connected between

two nodes a and b, and the angular frequency ω using the following steps:

1. Nodes are sequentially labeled from 1 to m. Ground node is not counted.

2. All values of G are initialized to (0 + j0).

3. For each pair of nodes (a,b):

(a) If a = b,

i. If there are K resistances connected to the node:

<(Ga,b) =
K∑
k=1

1

Rk

ii. If there are K capacitances connected to the node:

=(Ga,b) = jω

K∑
k=1

Ck

(b) If a 6= b,
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i. If there are K resistances connected between them:

<(Ga,b) = <(Gb,a) = −
K∑
k=1

1

Rk

ii. If there are K capacitances connected between them:

=(Ga,b) = =(Gb,a) = −jω
K∑
k=1

Ck

Accordingly, the current vector I will contain the magnitude and phases of the excita-

tion currents for each node. In all other aspects, the process is analogous to the solution

of the static case. The solution vector V provides the magnitude and phase of voltage

at the given frequency for every node in the model.

3.1.7 Time Stepping Solution

Time-stepping is computationally more expensive than static or frequency domain cases

as it involves solving the linear system once per time step; however, it does provide a

solution for transient response using arbitrary waveforms for excitation. In the equivalent

network, capacitors are used as energy storage components. To solve the system we

first consider initial conditions as defined by our static case, and time-step the system

at regular intervals, including the effect caused by the charging or discharging of the

network capacitances in terms of current injected or extracted from each network node.

This approach is not unlike what has been described by Nagel in [48] and posterior works.

It is of interest to express the current-voltage relation in a capacitor using a numerical

treatment that is compatible with both time-stepping and the expression of the linear

system (3.9). A possible formulation will now be derived; starting from the differential

formulation of the current-voltage relation in a capacitor (3.10), it can be observed that

it has the form of an initial value problem (3.11).

i(t) = C
dv

dt
(3.10)

y′(t) = f (t, y(t)) , y(t0) = y0 (3.11)
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Working with 3.11, and approximating the derivative as a first order finite difference

and considering a small interval h of the function’s domain,

y′(t) =
y(t)− y(t− h)

h
(3.12)

Rearranging,

y(t) = y(t− h) + h y′(t) (3.13)

From (3.11) and (3.13), and considering discrete numerical intervals, we arrive at the

Backward Euler formula,

yn+1 = yn + h f(tn+1, yn+1) (3.14)

From (3.10) and (3.11) we can write

f (t, y(t)) =
dv

dt
=
i(t)

C
(3.15)

which can be written as (3.16) when considering a discrete time domain and expressing

it for the next time-step, assuming that the capacitance does not vary over time.

f (n+ 1, yn+1) =
∆vn+1

∆tn+1

=
In+1

C
(3.16)

Finally, from (3.14) and (3.16), the discrete-time linear approximation to the voltage

at the terminals of the capacitor over time is given by (3.17).

vn+1 = vn +
h

C
In+1 (3.17)

The equivalent circuit for (3.17) is shown in Figure 3.8. Note that h
C

has dimensions

of a resistance. Since this circuital configuration introduces an extra node equation per

capacitor and uses a voltage source, it is more compact and convenient to represent it by

using a Norton equivalent.

Ieq =
C

h
Vn (3.18)

The final equivalent model for the capacitance is shown in Figure 3.9. From Figure 3.9,

it can be observed that a capacitor can be modeled by considering a resistance between
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Figure 3.8: Capacitor series linear equivalent.
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Figure 3.9: Capacitor parallel linear equivalent model. Equivalent current Ieq is calcu-
lated using (3.18)

the nodes in parallel with a current source Ieq. The current Ieq injected at each time step

will vary depending on the voltage Vn between the nodes at the last iteration according

to (3.18). This current is considered constant for the duration of each time step. A

new current vector N is used to introduce the varying Ieq current for each node at each

time step. If multiple capacitors are connected to a node, the corresponding currents are

added accordingly. The resulting system has the form described in (3.19)); in it, N is

updated and the system solved for V at each time step.

GeqV = I +N (3.19)
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The modified matrix Geq is the admittance matrix, calculated as described in the

Static Solution section, but considering the parallel admittances C
h

for each capacitance

in the network. As before, V is the unknown voltage vector, I the independent current

sources vector, and N the vector describing the displacement current contributed by the

charging and discharging of the capacitors during the most recent time step. The initial

conditions for the system are determined under DC conditions, that is, all capacitors are

considered open circuits and all values of N set to zero for the first iteration.

After an appropriate value for the time step increment s is chosen, simulating a

period of duration d involves solving n = dd
s
e time steps. Solving the system involves the

sequence of steps described below.

Time-stepping Algorithm

1. Determining initial conditions:

(a) Initialize the admittance matrix Geq from the equivalent impedance network,

considering all capacitors as open circuits. This is equivalent to considering

only the real part of the impedance, as described when populating G for the

static solution case.

(b) Initialize the voltage vector V to best-guess values. If no best-guess values are

available, all elements of V are initialized to 0.

(c) Initialize the current vector I to the instantaneous values for all current sources

at t = 0. This is equivalent to how I was populated in the static case.

(d) Solve the system GeqV = I for V .

(e) Save the voltage vector V as the solution of the system for time t = 0.

2. Initializing for time-stepping:

(a) Initialize the admittance matrix Geq from the equivalent impedance network,

this time considering the admittances C
h

for each capacitance in addition to

the resistors.

(b) Initialize all elements of the current vector N to zero.

(c) Initialize s, the time-step interval, to the duration of each time interval.

(d) Set the variable n, indicating the current time-step, to 0.
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3. Time-stepping

(a) n = n+ 1

(b) Fill the current vector I using the instantaneous value for each current source

for t = n×s. The procedure is analogous to how I was populated in the static

case.

(c) Set the value for each element of N using (3.18). Procedure is similar to how

I was populated in the static case, but considering each capacitor’s equivalent

current source instead of independent current sources.

(d) Solve the system GeqV = (I +N) for V .

(e) Save V as the solution of the system for time t = n× s

(f) If n < total number of iterations, repeat from step 3.

The same numerical techniques used to solve the static solution case are used to solve

the linear systems at steps 1.e and 3.d.

3.2 Post-processing

Post-processing has proven to be valuable in reducing local artifacts in the calculated

scalar potential field caused by discretization.

3.2.1 Voltage Interpolation

The result of the admittance method computation is the value of the voltages at every

node. In our multiresolution scheme, network nodes are located at the vertexes of voxels.

Because conductivity value is considered constant inside each voxel, trilinear interpolation

is used to calculate the voltage at arbitrary points inside a voxel from the values at the

voxel’s vertexes.

Trilinear interpolation has proved useful to generate a fixed spacing discrete electric

potential map from a multiresolution result set. This provides a more accurate result

than considering the the same value of voltage for all the points inside a voxel, as the

truncation error resulting from discretization is reduced. Further, when close to material

boundaries, or when plots for different magnitudes such as current density, voltage, and
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electric field must be correlated, it is often better to refer all values to the center of a

voxel instead of to a corner; trilinear interpolation was used again to refer voltage values

to the center of the unit voxel.

3.2.2 Calculation of Current Density ~J

Current density ~J for each voxel can be calculated from the conductivity σ and the

electric field ~E using (3.20).

~J = σ ~E (3.20)

When working with a static simulation, in the most general case σ can be expressed

as a rank two tensor as shown in (3.21).

σ =

 σx 0 0

0 σy 0

0 0 σz

 (3.21)

Similarly, if the system is being solved in the frequency domain, the expression for σ

will be (3.22).

σ =

 σx + jωεx 0 0

0 σy + jωεy 0

0 0 σz + jωεz

 (3.22)

Finally, if the system is being solved for time stepping, σ must consider the admittance

added by the capacitors using the linear approximation, and in the general case of an

anisotropic material, from (3.8), its expression is given by (3.23).

σ =


σx +

(
h

4εx∆x

)
0 0

0 σy +
(

h
4εy∆y

)
0

0 0 σz +
(

h
4εz∆z

)
 (3.23)

3.2.3 Calculation of Electric Field ~E

Once the voltages have been interpolated back to unit resolution, the ~E field can be

calculated at any instant t and at any point (i, j, k) in the model from the instantaneous
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voltages at t and using (3.24). The value ∆s is the size of a unit voxel.

~E =
Vi+1,j,k − Vi,j,k

∆s
x̂+

Vi,j+1,k − Vi,j,k
∆s

ŷ +
Vi,j,k+1 − Vi,j,k

∆s
ẑ (3.24)

The value calculated by (3.24) is referred to a corner of a voxel. To have the ~E

value referred to the center of each voxel (3.31), the interpolated voltages at the center

of each face of the voxel are considered instead of the voltages at the vertices. Center

face voltages for the voxel having its lower, left, back corner at (i, j, k) can be calculated

using the expressions below.

V̄up =
Vi,j,k+1 + Vi+1,j,k+1 + Vi+1,j+1,k+1 + Vi,j+1,k+1

4
(3.25)

V̄dn =
Vi,j,k + Vi+1,j,k + Vi+1,j+1,k + Vi,j+1,k

4
(3.26)

V̄lt =
Vi,j,k + Vi+1,j,k + Vi+1,j,k+1 + Vi,j,k+1

4
(3.27)

V̄rt =
Vi,j+1,k + Vi+1,j+1,k + Vi+1,j+1,k+1 + Vi,j+1,k+1

4
(3.28)

V̄ft =
Vi+1,j,k + Vi+1,j+1,k + Vi+1,j+1,k+1 + Vi+1,j,k+1

4
(3.29)

V̄bk =
Vi,j,k + Vi,j+1,k + Vi,j+1,k+1 + Vi,j,k+1

4
(3.30)

V̄up, V̄dn, V̄lt, V̄rt, V̄ft, and V̄bk refer to the voxel’s voltages at the center points of its

up, down, left, right, front and back faces, as illustrated in Figure 3.10. The center face

voltage values are calculated using (3.31).

~Ecenter =
V̄ft − V̄bk

∆s
x̂+

V̄rt − V̄lt
∆s

ŷ +
V̄up − V̄dn

∆s
ẑ (3.31)

3.2.4 Calculation Equivalent Resistance

Equivalent resistance as measured between an electrode injecting current and the current

return can be readily calculated by injecting a continuous current of 1 A in the stimulating

electrode, and solving the model for static conditions. Then, the voltage value reported at

the tip of the current-injecting electrode will be numerically equivalent to the resistance

between electrodes.

39



www.manaraa.com

x
y

z

 V
up

 V
ft

 V
lt

 V
rt

 V
dn

 V
bk

(i, j, k)

(i+1, j, k)

(i+1, j+1, k)

(i+1, j+1, k+1)

(i+1, j, k+1)

(i, j, k+1)

(i, j+1, k+1)

Figure 3.10: Position for center-face voltages of a voxel. V̄bk, V̄rt, and V̄dn, indicated
with arrows in the figure, are in the center of the respective non-visible faces of the voxel.

3.3 Method Verification and Error

It is of interest to characterize the performance of the method as described. Accurate nu-

merical solution of large, complex numerical models can be challenging, as many factors

influence the results. In addition to the quasi-static and frequency dispersion approxima-

tions, several sources of errors common to all time-stepping numerical electromagnetic

methods exist; they include modeling error, spatial discretization error, time quantiza-

tion, numerical approximation because of the use of iterative solving methods, and nu-

merical rounding. Moreover, when using iterative solvers, convergence is not guaranteed

for all possible cases. While intuitively it may appear that using a small grid will result

in a more precise numerical approximation, this is not necessarily the case, as decreasing

the voxel size in a model does not guarantee a smaller error in every case. The cause

of this is described in Figure 3.12: Since the smooth function describing the behavior

of the system is approximated by the values at the network nodes, the truncation error

will be smaller. However, smaller voxel sizes will result on closer numerical values at

neighboring nodes, causing an increase in the round-off error associated with differences

of similar numbers, and increasing overall error [49]. The numerical representation used
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Figure 3.11: Model for method verification.

by the computer system weights heavily on round-off error as well.

In most situations, a reasonable trade off of computational resources versus precision

can be achieved. Spatial discretization error is particularly influenced by model geometry

and level of detail. Time discretization is sensitive to the high frequency components of

excitation waveforms, and numerical rounding can be corrected to some degree by using

more precise numerical representations and appropriately scaling the linear system before

solving. Convergence can be improved using adequate preconditioning of the admittance

matrix, and precision of the solution can be increased by setting a smaller error criteria

to stop iterating.

Since the magnitudes of error vary depending on the model’s ratio of unit resolution

to minimum feature size, excitation source, and implementation of the formulation, the

approach taken to characterize error was to consider a model that can be analytically

solved and measure relative error in the numerical solution versus the analytical one.

A model and two test cases were devised to verify the proposed impedance method

formulation. The first case considers the static solution for every point in the model,

and the second case a solution at one point over time. The geometry of the model used

for both cases is identical, and pictured in Figure 3.11, and consists of a solid metallic

sphere of radius r1 = 5 cm surrounded by a concentric spherical metallic shell of radius

r2 = 50 cm. A current source is connected between the shell and the inner sphere,

which acts as a current return. The interstitial material between the inner sphere and

the shell was different for each simulation, as described in the respective sections below.
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Figure 3.12: Overall solution error as a combination of round-off error and truncation
error. h denotes the voxel size used in the model. Because of computer memory con-
straints, in general, simulations tend to operate towards the right of the optimum size.
Plot reproduced from [49].

The entire assembly was positioned in a slightly larger cubic space, measuring 1 m per

side. The model was partitioned into cubic voxels having 0.5 cm sides, for a total size of

220× 220× 220 unit voxels.

erel =

(
1− VIM

Vanalytical

)
× 100 (3.32)

Not all points in the model will have the same error. The largest errors tend to occur

immediately next to the current injection points; this is expected, because the current

densities will be larger close to the source, and for the same material conductivity, the
~E field will be larger, and since the space is partitioned in voxels, the relative errors for

voltage will be larger for the same voxel size than at distant parts of the model. This

effect can be minimized by setting the current injection points inside large homogeneous

volumes and using guide points to ensure an even spread of current from the injection

point.
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Overall Relative Error Calculation

Because the direct result of the impedance method is the scalar potential field over

the volume of the model, it is of interest to determine the error for voltages. Relative

percentage error for one point erel was defined as per (3.32), were VIM is the voltage

resulting from the Impedance Method simulation at the node corresponding to the point

in question, and Vanalytical is the voltage for the same point obtained using an analytical

solution for the same problem. The overall relative error for a simulation was computed

by sorting all the simulation points by their relative error, considering the 99% of points

having the lowest error, and reporting the maximum relative error for that group.

3.3.1 Static Case

The three dimensional model shown in Figure 3.11 represents the spherical capacitor

used as a test case for the method. The interstitial material between the inner sphere

and the outer shell was considered to be purely resistive, having a conductivity of σ =

1 s ·m−1. The center sphere and the outer spherical shell were modeled as metals, with

a conductivity of σmetal = 1e10 s ·m−1. The space outside the outer shell was filled with

metal for our simulation.

The voltage at any point in the interstitial medium was calculated as a function of the

distance from the center of the inner sphere by integrating successive spherical resistive

layers having a differential thickness using (3.33). Multiple cases were considered. A

simulation of the uniform resolution at 0.5 cm was executed in addition of the multi-

resolution cases to evaluate the multiresolution algorithm. Cases with and without guide

points were considered as well. For all simulations in this series using guide points, the

parameters used were were a = 0.12 and b = 0 (3.2).

V (r) =
I

4πσ

∫ r

r1

1

r2
dr =

I

4πσ

(
1

r1

− 1

r

)
(3.33)

A summary of the results is presented in table 3.1, and corresponding plots in Fig-

ure 3.18. In Table 3.1, the Clustering Strategy column describes the type of model, uni-

formly sized or a multiresolution, and if guide points at the current return and current

injection points were used or not. The Maximum Voxel Size column specifies the max-

imum size allowed for clustering in the multiresolution algorithm relative to unit voxel
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Table 3.1: Static Solution Results.

Clustering Maximum Number Relative Overall Relative
Strategy Voxel Size of Voxels Model Size (%) Error (%)
Uniform resolution 1 10648000 100.0 5
Multi-resolution 2 1703752 16.0 8
Multi-resolution 4 662507 6.2 21
Multi-resolution 8 553141 5.2 39
Multi-resolution 16 545144 5.1 97
Multi-resolution + GP 2 1729589 16.2 5
Multi-resolution + GP 4 698094 6.6 8
Multi-resolution + GP 8 593615 5.6 8
Multi-resolution + GP 16 588574 5.5 7

size. The Relative Model Size indicates the size of the model relative to the uniform reso-

lution case. Relative error distribution was observed to be sharper for cases where guide

points were not used. This was expected, as guide points allows for a smooth spread of

currents across a large number of nodes, which tends to minimize error dispersion for

homogeneous volumes. Figures 3.13 and 3.14, shows the relative error distribution for the

two multiresolution cases having a maximum voxel size of four, one using guide points

at the sources and the other not. Figures 3.15 and 3.16 show the results for maximum

voxel size of 16. It can be observed that the relative error is significantly smaller when

using guide points in both cases.

Another dimension that was explored for this model was the Bi-conjugate Gradient

method numerical convergence behavior for the linear system. The intention was to

determine what value for normalized residue was appropriate to use as a stop criteria for

similar models. Additionally, it was of interest to determine if the system would gradually

converge to a solution or if the convergence would be fast, and once reached, if further

error reduction could be achieved by executing extra iterations. For this, a simulation

set was created and multiple runs were executed, restricting the normalized residue value

used as criteria to stop iterating to an increasing number for each run. Results form

this set are shown in figure 3.17, and they suggest that once a reasonably low criteria

is reached, error does not further reduce with extra iterations. From the plot, it can be

observed that the normalized residue value for convergence in this model is in the order
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Figure 3.13: Impedance Method error distribution for the Static Case model and multi-
resolution clustering having a maximum size of 4.

Figure 3.14: Same case as Figure 3.13, but using guide points.
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Figure 3.15: Impedance Method error distribution for the Static Case model and multi-
resolution clustering having a maximum size of 16.

Figure 3.16: Same case as Figure 3.15, but using guide points.
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Figure 3.17: Relative error as a function of the residue stop criteria. All the data points
correspond to the static case, using multiresolution clustering with guide points at both
the current injection and current return points. The maximum normalized voxel size
used for clustering on this simulation set was 16.

Figure 3.18: Relative error as a function of the maximum voxel size allowed for clus-
tering. Using guide points at the source and return allows to keep the relative error low
independently of the maximum voxel size, permitting simulation of larger models with
the errors closer to the uniform resolution case.
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of 10−2; from this, the value adopted as normalized residue criteria to stop iterating in

all simulations in Chapter 4 was 10−7, five orders of magnitude smaller.

3.3.2 Time Varying Case

The time varying case was used to verify the time domain algorithm. For this case, the

setup described in Figure 3.11 was used to model charging a spherical lossy capacitor.

The multiresolution clustering algorithm was applied, allowing a maximum cluster size

of 16 unit voxels. Two guide points were used, one at the current source and one at the

current return. Initial conditions considered the capacitor was discharged. A 1A current

step starting at t = 0 was injected in the outer shell, while the inner sphere was set to

ground.

Figure 3.19: Canonical network model for spherical lossy capacitor.

For purposes of comparison, results for a canonical equivalent model shown in Fig-

ure 3.19 were obtained. The errors reported in this section were obtained by contrasting

the voltage obtained by the numerical solution of the model at the current injection point

using the time-stepping impedance method with the canonical solution for the voltage

at the test point in the circuit shown in Figure 3.19 and given by (3.34).

Vtp(t) = VTH

(
1− e−

t
RC

)
(3.34)

The relative error criteria is described by (3.32). As before, the overall error is con-
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sidered as the largest error that fits 99% of all the data points considered. While in

the previous section the values considered for calculating the relative error represented

voltage values for all the points in the model, in the time-stepping case the values con-

sidered represent voltages for a given point in the model with respect to ground for each

one of the time steps simulated. In (3.34), Vtp(t) is the instantaneous voltage at the test

point while charging the capacitor, and VTH is the Thevenin-equivalent voltage source

for Isource at Figure 3.19, which is equal to the numerical value of R, since Isource = 1A.

The relation between the value of R and the conductivity of the material between the

inner sphere and the spherical shell of the impedance method model is shown in (3.35)

and can be calculated from Ohm’s Law and (3.33).

R =
1
r1
− 1

r2

4πσ
(3.35)

Similarly, the relation between the value of the lossless capacitor C and the permittiv-

ity for the filling material can be determined to be (3.36) from the charge-voltage relation

for a capacitor and Gauss’s Law for a charged sphere.

C =
4πε0εr
1
r1
− 1

r2

(3.36)

To determine the model parameters, an arbitrary relative permittivity of εr = 106

was chosen. Then, in order to obtain a time constant in the order of few millisec-

onds, a conductivity σ = 1.4323 mS was adopted. The corresponding values for the

lumped components for the idealized model were determined to be R = 1023.1Ω and

C = 6.1814 µF using (3.35) and (3.36). The resulting time constant for the circuit was

then R × C ≈ 6.32 ms. The time step chosen was s = 0.1 ms and the total duration of

the simulation was 600 steps, close to ten times the time constant, to allow the voltage

across the capacitor to converge to a stable value.

Figure 3.20 show the simulation results, contrasted with the analytical solution. The

error distribution is reported in Figure 3.21. Overall, when using proper clustering pa-

rameters, the method resulted in acceptable errors for numerical simulations.
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Figure 3.20: Analytical and simulated charging voltages over time for time-stepping
test case.

Figure 3.21: Error distribution for the time-stepping simulation.

50



www.manaraa.com

Chapter 4

Applications to Medical Implanted

Devices: Retinal Prosthesis

4.1 Introduction

For implanted medical devices, the admittance method can provide a way to numerically

approximate the current densities, electric potential scalar field, electric and magnetic

fields, impedance in between two arbitrary points of the model, dynamics of the interface

between metal electrodes and body electrolytes, specific absorption rate (SAR), RMS

absorbed power, and more. In general, applications to implanted devices present unique

challenges in which it requires model resolutions far greater than the level of detail

needed to calculate power absorption by exposure to a varying electromagnetic field, as

done in[34] and [35]. This is one of the key reasons why the multiresolution algorithm is

important for this type of problem.

The applications of the multiresolution admittance method described in this chapter

are in the context of a retinal prosthetic implant to partially restore vision to people

suffering from certain degenerative diseases of the eye; however, the principles used are

generic and appropriate for modeling of a wide variety of implanted electrical stimulation

devices. Retinal degenerative diseases such as Retinis Pigmentosa (RP) and Age Related

Macular Degeneration (AMD) progressively disable photoreceptor cells and eventually

lead to blindness. In clinical studies, it has been observed that even when photoreceptor

cells are no longer active, a large portion of the visual pathway remains relatively healthy

in the short term [5]. Furthermore, patients have reported seeing points of light in
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Figure 4.1: Three-dimensional rendering of partial head model used for calculating
extraocular (corneal) electric stimulation. Electrodes where positioned in direct contact
with the cornea of the eye, and current return was considered in the temporal aspect of
the head, shown in the model as a darker cylinder, towards the left side of the figure.

an otherwise blank visual field when probe electrodes were used to inject appropriate

amounts of electrical charge in the Ganglion Cell Layer of the retina [7]. Taking advantage

that the spatial location of the perceived light appears to correspond to the physical

location of the electrical stimulus in the ganglion cell layer (GCL), an implanted retinal

electrical stimulator can be used stimulate the human retina in a systematic way and

restore a limited form of vision. The electrical stimulation of the GCL is performed

using an implantable electrode array positioned inside the eye, affixed to the retina using

a surgical tack. The implantable stimulators allow to partially restore some form of

vision to patients blinded by photoreceptors loss; this is achieved by using of systematic

electrical stimulation of the surviving ganglion and bipolar cells, thus effectively replacing

the functionality of the now damaged photoreceptor cells.

It is not clear at this time if retinal implants are a viable long term solution to restore

vision, as degenerative diseases tend to progressively remodel retinal neural tissue in

complex ways [14, 15]; nonetheless, the studies and simulations presented below address

a significant portion of the applications and possibilities of the proposed admittance

method to medical implants in general.
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Figure 4.2: Transversal slices of numerical model for extraocular stimulation at the
center of the eye (Left) and corresponding rendering using the multiresolution algorithm
and a maximum voxel size M = 4 (Right).

4.2 Extraocular Electrical Stimulation

When considering implanting a retinal stimulator, it is desirable to be able to charac-

terize the response of the patient’s retina to electrical stimulation prior to surgically

implanting a permanent device [5]. The multiresolution admittance method was used

to determine the electric potentials at the retinal surface arising from stimulation using

corneal electrodes. Two different electrodes, namely a DTL Plus electrode manufactured

by Diagnosys LLC, and ERG-Jet manufactured by Fabrinal SA, have been considered as

a mean to provide an electrical stimulus on the external surface of the cornea with the

intent of exciting visual stimuli (phosphenes), and measuring the ability of the remaining

visual path to respond to electrical stimulation.

An anatomically correct partial model of a human head spanning a 7 cm× 8.6 cm×
9.5 cm volume, centered around the right eye, and having a resolution of 250 µm was

devised using spatial interpolation from the 1 mm male dataset of the Visible Human

Project [45]. The extents of the model are shown in Figure 4.1, and transverse slices

at the center of the eye and at the center of the return electrode shown in Figure 4.2.

The size of the model was 281 × 345 × 380 voxels, and the dielectric properties of the

constitutive tissues are listed in Table 4.1. Tissue dielectric properties were collected from
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literature [50]. The multiresolution clustering algorithm was applied using a maximum

voxel size of M = 4, which reduced the voxel count by 70%, from 36.8 million voxels to

10.8 million voxels.

Table 4.1: Tissue Conductivities at 100 Hz.

Material Conductivity (Ω ·m)
Air 1.00E-020
Blood 7.00E-001
Blood Vessel 2.78E-001
Bone Cancellous 8.10E-002
Bone Cortical 2.01E-002
Bone Marrow 1.82E-003
Brain Grey Matter 8.90E-002
Brain White Matter 5.81E-002
Cartilage 1.72E-001
Cerebro Spinal Fluid 2.00E+000
Eye Cornea 4.22E-001
Eye Lens 3.22E-001
Eye Retina 5.03E-001
Eye Sclera 5.03E-001
Fat 2.08E-002
Glandular Tissue 5.22E-001
Metal 1.00E+010
Mucous Membrane 4.61E-004
Muscle 2.67E-001
Muscle 2.67E-001
Skin (Dry) 2.00E-004
Skin (wet) 4.61E-004
Tendon 3.05E-001
Vitreous Humor 1.50E+000

Two types of corneal electrodes were modeled. The JET electrode is essentially a thin

1 cm diameter ring electrode positioned on the cornea, much like a contact lens, with the

current return positioned on the temple. The DTL electrode is a thin conductive wire

in contact with the lower frontal aspect of the cornea, where it meets the sclera with,
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Figure 4.3: DTL Plus electrode, courtesy of Diagnosys LLC (www.diagnosysllc.com),
by its own (Top Left), and positioned on eye (Top Right). ERG-Jet corneal electrode,
courtesy of Fabrinal SA (www.fabrinal.ch), by its own (Bottom Left) and placed on
eye(Bottom Right).

again, the current return placed on the temple. Figure 4.3 shows both configurations.

Stimulation was provided by a 2 ms, 0.5 mA rectangular current pulse. Fourier analysis

was used to determine that the strongest frequency component of the stimulation pulse

was close to 100 Hz, so tissue conductivity for that frequency was used.

The system was statically solved using the multiresolution admittance method, ob-

taining the electrical scalar potential for all points of the problem for the described

stimulation signal for each electrode. This resulted in retinal surface voltages ranging

from 19.438 V to 19.450 V for the case of the DTL electrodes, and slightly lower values,

19.293 to 19.303 for the Jet electrode.

The voltage values corresponding to the retinal surface were then extracted, and

mapped into a rectangular area using a spherical to cylindrical projection of the retinal

surface. The resulting retinal surface voltage map is shown in Figure 4.4 and Figure 4.5;

the left side of the plots correspond to the optic nerve in the back of the eye, and the
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Figure 4.4: Retinal surface voltage map resulting from extraocular stimulation using
DTL Plus electrode. The values at the spherical surface of the retina are mapped to a
cylindrical surface which is cut at the nasal aspect and unrolled to a rectangular area.
Arrows on eye diagrams on the left indicate approximate position of eye for Y axis
(looking towards right eye of patient). Left side of plot corresponds to optic nerve, right
side corresponds to the frontal portion of the retina.

right side to the frontal edge of the retina. The retinal potential was calculated at the

vitreous humor, 125 µm from the surface of the retina, using linear interpolation; this

location was chosen because the vitreous humor has higher conductivity and a larger

homogeneous volume compared to the retina, which helped to obtain a well behaved

gradient by interpolation given the constraints in model resolution.

Starting from the retinal surface potentials, the activation function [13] corresponding

to the direction of the OFL axons was approximated as the second derivative of the

voltage with respect to the direction of the ganglion cell layer axons flowing towards

the optic nerve (right to left, horizontal, in the figures) for both Jet and DTL corneal

electrodes. Figure 4.6 and Figure 4.7 show the absolute value of the normalized activation

function; this should be an appropriate approximation for balanced biphasic pulses in a
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Figure 4.5: Retinal surface voltage map resulting from extraocular stimulation using
ERG Jet electrode. The values at the spherical surface of the retina are mapped to a
cylindrical surface which is cut at the nasal aspect and unrolled to a rectangular area.
Arrows on eye diagrams on the left indicate approximate position of eye for Y axis
(looking towards right eye of patient). Left side of plot corresponds to optic nerve, right
side corresponds to the frontal portion of the retina.

linear model. In order to generate plots that are directly comparable for both electrode

designs, and to account just for the regions where activation is possible, only the positive

values where considered in the plots (negative values were considered as zero), and the

resulting plot was normalized to a 0 to 1 range. In addition, a 3 × 3 matrix averaging

filter was applied to mitigate the effect of the relatively coarse model resolution compared

to the thickness of the retina. The vertical striping pattern observed in the activation

plots is due to the staircase effect artifacts caused by the simulation meshing process and

the resulting voxel size for this set of models. The red circle in Figure 4.7 marks a high

local value for the activation function due to an anomaly in the model, and it is present

in all simulation runs. At that place in the model the choroid is pinched and the retina

is in direct contact with the sclera. This is due to the relatively coarse resolution of the
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model.

The resulting activation pattern is strongly concentrated in the retinal surface closer

to the electrode in the case of the DTL electrode, while it is evenly distributed for the

Jet electrode. Based on this numerical simulation and data from clinical trials, the DTL

electrode was considered a better choice for using during the pre-surgical assessment of

RP patients. Comparisons of numerical results obtained using this method and avail-

able experimental data from patients suffering from RP recorded by Xie et al show a

remarkable agreement, and have been reported in [41].

4.3 Parametric Models for Epiretinal Implantable Elec-

trode Array

In the context of designing better implantable electrode arrays apt for epiretinal elec-

trical stimulation, it was desirable to understand what geometry and constructive pa-

rameters influence the performance of the devices. To this effect, a set of simulations

were performed, aiming to answer questions including how important is array placement

in perfect contact with the retinal surface, how having a near by current return will

affect the injected charge distribution, and the effects of electrode size for this particu-

lar configuration. The results from each simulation set was tabulated and the resulting

curves fitted and expressed as a function of the injected current and other parameters, to

gain a qualitative understanding of the impact of individual parameter variation in this

configuration.

One of the parameters taken into account for electric stimulator design is the ability of

the device to inject and extract electrical charges at the target location. Current density

magnitude at the ganglion cell layer (GCL) is a good indicator of the performance of

the stimulator, and has been used through this section as an indicator of performance

of the implanted device. A model including a flat layered retina and an stimulator

consisting in a 5 × 5 electrode array model was constructed. The stimulator array was

placed in an epiretinal configuration, with the electrodes embedded in an insulating

backing, and the current return at the back of the assembly, as shown in Figure 4.8. The

thickness and resistivity of the retinal layers considered was obtained from measurements

made on images of microscopic photographies from a mammalian retina [12] and from

literature [51], and is described in Table 4.2. For all the simulations, all the electrodes
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Figure 4.6: Approximation of the activation function resulting from extraocular stimu-
lation using DTL electrode. The values at the spherical surface of the retina are mapped
to a cylindrical surface which is cut at the nasal aspect and unrolled to a rectangular
area. Arrows on eye diagrams on the left indicate approximate position of eye for Y axis
(looking towards right eye of patient). Left side of plot corresponds to optic nerve, right
side corresponds to the frontal portion of the retina.
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Figure 4.7: Approximation of the activation function resulting from extraocular stim-
ulation using ERG Jet electrode. The values at the spherical surface of the retina are
mapped to a cylindrical surface which is cut at the nasal aspect and unrolled to a rect-
angular area. Arrows on eye diagrams on the left indicate approximate position of eye
for Y axis (looking towards right eye of patient). Left side of plot corresponds to optic
nerve, right side corresponds to the frontal portion of the retina. The red circle marks
anomaly due to pinching of choroid in model, present in both Jet and DTL cases.
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Figure 4.8: Model of 5× 5 epiretinal electrode array (not to scale).

were considering firing simultaneously, driven by current sources, each injecting 100 µA.

To resolve the layered structure of the retina, the entire model was discretized at a

resolution of 10 µm.

Table 4.2: Retinal Layered Model.

Material Resistivity (Ω ·m) Thickness (µm)
Photoreceptors 50.5 62.4
Outer Nuclear Layer (ONL) 60.0 31.2
Outer Plexiform Layer (OPL) 70.0 62.4
Inner Nuclear Layer (INL) 65.0 31.2
Inner Plexiform Layer (IPL) 18.0 31.2
Ganglion Cell Layer (GCL) 70.0 31.2
Nerve Fiber Layer (NFL) 70.0 31.2

4.3.1 Effect of Electrode Array Lift-Off

In epiretinal implants, because the implant is positioned by the surgeon through a small

opening on the sclera, and the retinal tissue is particularly fragile, the implant cannot

always be pressed to perfectly close the gap between the electrode array and the retinal
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surface. We will refer to this gap as lift-off. Further, in some electrode array designs,

the implant is held in place by one or two conductive surgical tacks [7, 10], and if the

eye retains movement after surgery, the stimulator may move or partially lift over time

because of the mobility of the eye. Lift-off allows a thin, conductive, film of vitreous

humor to exist between the electrodes and the retinal surface, causing currents to have a

path of smaller resistance toward the current return than going through the retina, where

we intend to direct the charges. Because of the proximity to delicate retinal tissue, and

the ability of the eye to change curvature, epiretinal stimulators are often encapsulated in

soft, flexible materials [6]. This makes achieving and keeping a perfect contact between

the electrode array and the retina even more challenging

A set of five simulations were performed to help understand the effect of lift-off in GCL

current density magnitude for this stimulator, considering 100 µm diameter platinum

electrodes placed in a 5× 5 array configuration, separated 200 µm between neighboring

electrode centers, and considering lift-off values from 0 µm (perfect contact) to 50 µm,

in 10 µm intervals. For each case, the current density magnitude at the GCL under the

center electrode was tabulated and reported in Table 4.3.

Table 4.3: Effect of lift-off on GCL current density magnitude for 5× 5 electrode array
of 100 µm electrodes. Values taken under the central electrode, all electrodes active,
injecting 100 µA each.

Lift-off (µm) J (A ·m−2)
0 4314.34
10 480.55
20 277.31
30 199.55
40 156.07
50 128.28

Figure 4.9 shows the effect of lift-off on the current density magnitude at the GCL,

taken from under the central electrode of the array. Values under the other electrodes are

relatively close. Larger values of lift-off cause significantly lower current densities, and

tend to amalgamate the area of stimulation of electrodes into an undifferentiated zone.
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To characterize the general effect of lift-off on GCL currents for this configuration, the

values documented in Table 4.3 were curve-fitted, and scaled by the injected current. The

resulting current density magnitude variation as a function of lift-off for this particular

configuration is shown in Figure 4.9.

Assuming an even charge injection for all electrodes is desirable, the conclusion for

this set of simulations is that in epiretinal configurations, it is critical for the stimulator

array to conform to the curvature of the eye. While a smaller lift-off will make the

implant more power efficient for the same amount of charge injected in the retinal tissue,

a larger gap between the retinal surface and the stimulator will make the effect of small

variations of the lift-off value for different electrodes smaller. A larger lift-off will also

result in less defined stimulation areas at the GCL. If the curvature of the prosthesis does

not follow the surface of the retina, electrodes will not achieve an even charge injection

unless the current injected by each individual electrode is adjusted using a current density

magnitude versus liftoff curve adequate for the device geometry.

4.3.2 Effect of Electrode Diameter

Electrode diameter affects the size of the area affected by stimulation, and is relevant

to the safety of the implant. In the short term, it affects the peak current density for

a target amount of charge injection, as current density is inversely proportional to the

section of the electrode. In the long term, for metallic electrodes, having a larger current

density will likely imply a higher amount of faradaic charge injection and introduce new

chemical species at the electrode-electrolyte interface [2, 52]. This process is toxic for

the living tissue, detrimental for the longevity of the metal electrodes, and reduces the

efficiency of the electrical stimulation over time [2].

A set of five simulations were performed using the multiresolution admittance method,

and the results for each case tabulated in Table 4.4. The values from Table 4.4 were

curve-fitted to better understand the relation between electrode size and current density

magnitude at the GCL under the central electrode for this configuration, and plotted in

Figure 4.10. As expected, if all other parameters are the same, smaller electrodes resulted

in higher current density magnitudes at the GCL. It was also observed that using even

the largest diameter electrodes, the individual spots under each active electrode were

clearly differentiated.
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Figure 4.9: Effect of lift-off in current density magnitude at GCL. Current density
magnitude for electrode array in perfect contact with retinal surface (Top Left). Current
density magnitude for electrode array lifted 50 µm from retinal surface (Top Right).
Current density magnitude as a function of lift-off for 100 µm diameter electrodes. Value
of current density magnitude taken in GCL at center of central electrode of array. All
electrodes active, each injecting 100 µA (Bottom).
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Figure 4.10: Effect of electrode diameter on current density magnitude at GCL. Current
density as a function of electrode diameter. Value of current density taken in GCL at
center of central electrode of array. All electrodes active, each injecting 100 µA.
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Table 4.4: Effect of electrode diameter in GCL current density y magnitude for 5 × 5
electrode array. Values taken under the central electrode, all electrodes active, injecting
100 µA each..

Diameter (µm) J (A ·m−2)
25 11372.90
50 8634.51
75 5768.58
100 4314.34
125 3428.61
175 2172.18

4.3.3 Effect of Electrode Current Return Placement

When the current return is close to the stimulating electrodes, its placement plays an im-

portant role on the distribution of injected charges. Many parameters affect the outcome

in this case, making it hard to characterize. Among the most important are current re-

turn position with respect to the active stimulating electrode, geometry of near-by tissue

structures, and the shape of the current return. This variation is not as pronounced when

the current return is far away from the stimulator; this was expected as that case more

accurately approximates monopolar stimulation. To qualitatively illustrate the kind of

variation in current density magnitude we could expect depending on the current return

configuration for current return placement close to the stimulating electrode array, two

simulations of a high-density 1024 electrode stimulator were performed, the first using

a disc shaped current return close to one of the corners of the insulating backing of the

electrode array, and the second using a long conductive bar spanning one entire edge of

the stimulator pad. Both models considered a laminar model of the retina. Resulting

current densities at GCL are shown as a color plot in Figure 4.11.

It can be observed that even when all active electrodes are injecting the same amount

of current, the current densities at the GCL greatly vary for each case, and are uneven

for neighboring electrodes. Partly because of this effect, the current return in the actual

implants is positioned as far as possible from the actual stimulator.
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Figure 4.11: Effect of current return placement on current density magnitude at GCL, for
electrode arrays having 1024 electrodes. Active electrodes spell pattern reading ”BEML
NC State University”. All active electrodes are injecting the same amount of current in
both plots. Disc shaped current return at the lower right corner (Top) produces higher
current densities as the top and bottom of electrode array. Bar shaped current return
at the right of array (Bottom) produces higher current densities on the half of the array
closer to the current return.
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Chapter 5

Modeling Cellular Lysis In Skeletal

Muscle due to Electric Shock †

5.1 Abstract

High-voltage electrical trauma frequently results in injury patterns that cannot be com-

pletely attributed to injury mediated by heat. An electrical injury model describing

cellular lysis damage caused by supraphisiological electric fields was derived and used to

evaluate the effects of high-voltage electric shock on the skeletal muscle of a human up-

per limb, in a configuration that simulates hand-to-hand contact. The resulting current

through the arm and the electric field inside the tissue were calculated using a multi-

resolution variant of the admittance method and a millimeter resolution anatomically

correct model of a human upper limb. The injury model was used to estimate progres-

sive damage of skeletal muscle in the arm. Values for the current through the arm and

the upper limb impedance are reported as well.

† From Carlos J. Cela, Raphael C. Lee, and Gianluca Lazzi, Modeling Cellular Lysis In Skeletal
Muscle due to Electric Shock, to be submitted for publication.
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5.2 Introduction

High-voltage electrical trauma frequently results in injury patterns involving selective de-

struction of muscle and nerve tissue [18]. These patterns cannot be completely attributed

to injury mediated by heat. It has been reported in the literature that besides thermal in-

jury caused by Joule heating, cellular membrane pore formation leading to cellular mem-

brane rupture and direct electroconformational denaturation of macromolecules, such as

proteins, are active tissue-damaging mechanisms in the presence of supra-physiological

electric fields [19, 20].

Among high-voltage electric shock accidental exposures, hand-to-hand circuit paths

count among the most common occurrences, and the most sensitive tissues to damage

are skeletal muscle and nerve. Further, there is evidence that electrical injury in muscle

tissue by pore formation in cellular walls affects the conductivity of tissue [19].

It was of interest, then, to model the effect of a hand-to-hand high-voltage electric

shock on human skeletal muscle conductivity. We focus on modeling the effects of cellular

membrane rupture caused by an externally applied electric field, and how this affects

tissue conductivity. When low-frequency electric shocks are applied to skeletal muscle,

the electrical current is effectively shielded from the citoplasmatic fluid by the cellular

membranes. Because the presence of cells in bodily tissue diminishes the extracellular

volume available for ionic currents, and the cellular membrane is comparatively more

resistive, tissue with tightly packed cells is less conductive. When cell membranes rupture

due to the action of supra-physiological electric fields, the citoplasmatic fluid is in direct

electrical contact with extracellular fluid and available to conduct current, increasing the

overall conductivity of the affected tissue. This effect was experimentally measured and

reported by Bhatt in [19].

In this work, a numerical model for muscle injury from electrical shock was derived

from available experimental data and used to evaluate the effects of a one second 10kV

electric shock on skeletal muscle of a human upper limb, in a configuration that simulates

hand-to-hand contact. The arrangement shown in Figure 5.1 was used to approximate

this case. Resulting currents and electric field inside the tissue due to the applied shock

were calculated using the multiresolution variant of the admittance method described in

Chapter 3 and a millimeter resolution anatomically correct model of a human upper limb

[45]. The model considered dielectric properties of skeletal muscle, bone, fat, skin, and

14 other tissues.
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Figure 5.1: Configuration used for calculating electric field inside upper limb. Current
was injected into 5cm2 hand electrode, and current return consisted of a metal plate
covering the entire surface exposed when arm was sectioned from body. A pulsed source
injected 10 ms pulses having an amplitude of 4.5 kV .

5.3 Electric Injury Model for Cellular Lysis

Consider a sample of muscle tissue positioned between two electrodes as shown in Figure

5.2, having a length L and a cross-section A. The sample is subjected to a longitudinal

pulsed electric field generated by V . Electrically, we model the conductance of a single

cell as γc if the cell is intact and as γl if the cell is lysed.

Initially, the sample has N intact cells. With each delivered shock a fraction ε of all

remaining intact cells is lysed. In our approximation, the conductance of the lysed cells

is in parallel with the conductance of the remaining intact cells, as depicted in Figure 5.3.

After i shocks are delivered, assuming that ε remains constant through the experiment,

a number N (1− ε)i of cells will remain intact (Table 5.1), and the remaining Li cells

will be lysed by action of the electric field (5.1).

Li = N −N (1− ε)i (5.1)

The conductance γi of the sample after i pulses can be expressed as the conductance
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V

Figure 5.2: Diagram of injury model setup. Muscle tissue sample is exposed to a pulsed
electric field generated by voltage source V (Left). Cross-section of tissue sample between
electrodes (Right)

V

cells

lysed cells

Figure 5.3: Conductance when considering intact and lysed cells.

of the intact cells in parallel with the conductance of the lysed cells. This approach will

work if we consider that eventually all cells in our sample will be lysed by the action of the

electric field; however, this turns out not to be the case. If we observe the experimental

measurements in Figure 5.4, it can be seen that the curves of maximum normalized

conductivity fraction converge to higher conductivity values when stronger electric fields

are used for the pulses. This suggests that regardless of how many pulses are applied

at low field strengths, not all cells in the sample will lyse. To correct for this effect,

a parameter αl, dependent of the electric field magnitude, is introduced, affecting the

maximum apparent conductivity of the sample. The overall conductivity of the tissue

sample after i pulses can then be expressed as (5.2).

γi = (N − Li) γc + Liαlγl (5.2)

Using (5.1), we can express (5.2) as (5.3).

γi = N
(
αlγl + (1− ε)i (γc − αlγl)

)
(5.3)

While the conductance values can be measured experimentally, ε and αl characterize
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Table 5.1: Calculation of remaining healthy cells after a given number of pulses, starting
with N healthy cells, having a fraction ε of remaining healthy cells lysed every pulse.
The general expression (bottom, left) is obtained using mathematical induction.

Number of Number of healthy General form
electric pulses cells remaining

0 N N(1− ε)0

1 N −Nε N(1− ε)1

2 (N −Nε)− (N −Nε)ε N(1− ε)2

...

i N(1− ε)i

the effects of multiple factors in the model, including cell history, temperature, electric

field strength, electric pulse duration, etc, and must be derived by fitting experimental

data. In addition, while (5.2) is intuitive, for purposes of numerical modeling it is desir-

able to have a formulation independent of the form factor of the tissue sample, that is, to

consider conductivities instead of conductances. Using analogous reasoning to what we

used for (5.3), but considering conductivities instead of conductances and lysed volume

fraction per pulse instead of number of cells lysed per pulse we can express the tissue

conductivity as (5.4).

σi = βlσl + (1− δ)i (σc − βlσl) (5.4)

In (5.4), σc is the conductivity of intact tissue, σl is the conductivity of tissue having

all cells lysed, βl is the analogous factor of αl, σi is the conductivity of the tissue after i

electric shocks have been applied, and δ is the fraction of volume lysed by a single pulse,

which corresponds to ε in (5.3). The intact and lysed tissue conductivities are related to

their respective conductance values by (5.5) and (5.6) respectively.

σc =

(
N · L
Ac

)
γc (5.5)

σl =

(
N · L
Al

)
αl
βl
γl (5.6)
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Equation (5.5) considers a tissue sample having all cells intact, an uniform cross-

section of Ac, and a length L. Equation (5.6) considers all cells in the tissue sample to

be lysed, a uniform cross-section Al and a length L. If both σc and σl are the extreme

values for conductance of the same tissue sample, Ac and Al will have the same value,

αl and βl will have the same value, and by dividing (5.6) by (5.5) we can see that the

fractional variation of conductance with tissue injury equals the fractional variation of

conductivity, as shown in (5.7). This is helpful in which it allows us to use normalized

conductance experimental values to obtain normalized conductivity values of tissue.

σl
σc

=
γl
γc

(5.7)

Following logic similar to what we used for (5.1) before, the lysed volume fraction Ki

can be computed as (5.11).

Ki = 1−Hi (5.8)

where Hi is the volume fraction of tissue occupied by intact cells after i pulses, and

can be expressed using (5.9).

Hi = (1− δ)i (5.9)

The specific impedance of the tissue zi after i pulses can now be expressed as (5.10) .

zi =
1

βlσl +Hi (σc − βlσl)
(5.10)

Using (5.4), (5.8), and (5.9) we can now express the total lysed volume fraction Ki

as a function of the tissue conductivity σi (5.11).

Ki = 1−
(
σi − σl
σc − σl

)
(5.11)

Note that βl is purposely not included in (5.11), as we intend Ki to refer the total

lysed volume fraction to maximum conductivity (i.e. 100% of cells lysed), independently

of the maximum fraction of cells lysed for the applied electric field magnitude.
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Figure 5.4: Normalized conductivity fraction variation in biceps femoris of Sprague-
Dawley rats as 10ms electric pulses are applied, for different electric field magnitudes.
Data points calculated by applying (5.12) to experimental data reports by Bhatt et al
[19]

5.4 Experimental Data Fitting

In 1990, Bhatt et al produced experimental data on normalized impedance variation as

a function of number, duration and strength of electric pulses applied to muscle samples

from biceps femoris from Sprague-Dawley rats [19]. Our goal was to use this data to

predict similar variations in human muscle by means of numerical simulations. In order

to arrange the data in an appropriate format for numerical simulations, (5.12) was used to

convert the percent normalized impedance zpercent to a normalized conductivity fraction,

as shown in Figure 5.4.

σi
σc

=
100

zpercent
(5.12)

To obtain a general expression of the conductivity after a number i of electric pulses

has been applied σi, the data points from Figure 5.4 were fitted to equation (5.4) using

non-linear least squares fitting. Considering a normalized conductivity of σc = 1 for intact

cells, this resulted in values of δ and βl for each strength of electric field, as reported in
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Figure 5.5: Normalized conductivity fraction variation as a function of number of pulses
applied, obtained by fitting (5.4) to experimental data from [19] (data points marked
with geometrical shapes in figure). Pointed lines show upper and lower 95% confidence
bounds for the fitting.

Table 5.2. For purposes of our approximation, it was considered that an electric field

having a magnitude of 30 V ·m−1 or smaller would not damage intact cells.

Since δ and βl vary with the strength of the electric field, the values from Table

5.2 were fitted to obtain the intermediate values as needed. The resulting equations

are (5.13) and (5.14). Assuming pulses of 10 ms duration and equal magnitude, and

tissue conductivities normalized so σc = 1, the resulting normalized conductivity σi

after a number of pulses have been applied can be calculated in two steps: First the

corresponding values for δ and βl are calculated using (5.13) and (5.14). Second, (5.4) is

used to calculate the tissue conductivity after the pulses have been applied. Figure 5.5

shows conductivity curves resulting from the fitted functions below for a range of voltages.

δ = 0.7441 e−0.03214 |E| (5.13)
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Table 5.2: Values for 10ms pulses. | ~E| is expressed in V ·cm−1. βl and δ are adimensional.

| ~E| βl δ
30 0.28827 -
60 0.34107 0.10710
90 0.43947 0.04704
120 1.87520 0.008134

βl =
σc
σl

(
0.9163 e0.005507 |E| + 2.949× 10−6 e0.1199 |E|) (5.14)

In equations (5.13) and (5.14), |E| represents the magnitude of the longitudinal elec-

tric field that the muscle cells are exposed to in every pulse. For purposes of our numerical

simulation, we considered two extreme values for muscle conductivity: σc = 0.4 S · cm−1

[16] when all cells are intact, and σl = 1.5 S · cm−1, the conductivity of body fluid [50],

when all cells are lysed. When normalized, σc = 1 and σl = 3.75; further, the value of

σi is never taken as larger than the σl value, as we interpret that all cells are lysed the

moment that expression (5.4) reaches the σl value. Using (5.11), Figure 5.6 shows the

total lysed fraction in muscle as a function of its conductivity.

5.5 3-D Multiresolution Admittance Method

In order to calculate electric injury by cellular lysis inside a human arm, we have first to

determine the electric field strength. The multiresolution admittance method described

in Chapter 3 was used to determine the electric field strength for each point in the skeletal

muscle of the arm.

5.6 Numerical Modeling and Simulation

The size of the model was 636 × 315 × 302 voxels, and it considered the tissues and

conductivities reported in Table 5.3. Once the multiresolution algorithm was applied,

considering M = 4, the voxel count dropped to 7.4% of the original size, from over 60

million to under 5 million voxels.
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Figure 5.6: Lised fraction Ki as a function of muscle conductivity σi, for the ranges used
during the simulation.

The skin-electrode interface conductivity was calculated considering a 1 µF · cm−2

contact capacitance, perfect electrode contact, and half of the current conduction and

half displacement [16]. The skin immediately under the electrode was removed; the hand

electrode was in direct contact with muscle and fat. This was done to simulate reported

effects of the underlying skin evaporating almost immediately upon high-voltage contact

[16]. Other conductivity values considered are values reported for 60 Hz in [16], [53] and

[4]. A 1 A DC current source connected to a 5 cm2 metallic electrode was positioned

in the palm of the hand, having its current return at a large metallic plate completely

covering the tissue exposed where the arm was sectioned from the body, as depicted

in Figure 5.1. Since the injected current was 1 A, the resulting voltages represent the

numerical value of the impedance with respect to the current return plate at the shoulder.

This resulted in a total arm impedance between the metal side of both electrodes of 814Ω,

considering the metal-tissue interface, and an impedance of 550Ω between the tissue side

of both electrodes, without considering the interface.

To simulate the effect of a 60 Hz, 10 kV hand-to-hand contact, the current injection

was scaled so it resulted in 4.5 kV applied between the hand electrode and the current

return plate at the shoulder. This resulted in a total current of 5.53 A circulating through

the arm. The magnitude of the electric field in the model was then calculated from the
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Figure 5.7: Electric field magnitudes resulting from a 4.5 kV shock. From left to right,
each diagram shows the volumes inside the arm having increasing electric field strength.

electric potentials. The regions of the arm having electric fields with a magnitude large

enough to cause cellular lysis as a result of the applied pulses are shown in Figure 5.7.

The maximum electric field resulting from this configuration was in excess 400 V · cm−1,

at the interface between the hand electrode and the tissue.

Assuming that cellular lysis is roughly proportional to the total energy delivered by

the pulses, the 4.5 kV , 1 s, 60 Hz, sinusoidal, high-voltage electric shock was modeled

as 100 rectangular pulses, each of them having a duration of 10 ms and an amplitude of

4.5 kV .

βl and δ where then determined for each voxel in the model, using the calculated

electric field magnitude and equations (5.13) and (5.14). The resulting conductivity

after a number of pulses was then calculated using (5.4), and the fraction of lysed cells

determined using (Figure 5.6). The resulting injury patterns are presented in Figure 5.8

and Figure 5.9.
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Table 5.3: Tissue Conductivities

Material / Tissue Conductivity (S ·m−1)
Air 1.000× 10−7

Metal 1.000× 106

Body fluid 1.500
Fat 5.000× 10−2

Lymph 5.217× 10−1

Nail 2.006× 10−2

Nerve 2.765× 10−2

Muscle (intact) 4.000× 10−1

Muscle (lysed) (as Body fluid)
Glands 5.217× 10−1

Blood vessel 2.648× 10−1

Bone (cortical) 1.000× 10−2

Cartilage 1.717× 10−1

Ligaments (muscle) 4.000× 10−1

Skin (dry) 3.800× 10−4

Blood 7.000× 10−1

Bone marrow 1.699× 10−3

Bone (cancellous) 1.000× 10−2

Skin-Electrode Interface 7.540× 10−3

5.7 Discussion

The electric injury model parameter βl affects the maximum amount of damage that a

set of pulses of a given electric field magnitude can cause. δ affects how much of that

damage is delivered with each pulse. The combined effect of βl and δ for a given field

strength can be clearly appreciated in Figure 5.8 and Figure 5.9; while the relatively lower

fields caused faster but limited amount of lysis in the middle forearm, the higher field

strength on the distal forearm caused more damage at a slower rate. The time-sequence

of damage in Figure 5.9 shows that in this case, muscle damage by cellular lysis happens

in the first half second of exposure.

It is interesting to notice the geometry of the lysed areas in Figure 5.9. The overall

tendency is for the current density to increase towards the distal portion of the forearm,

since the cross-section of the arm is smaller. This causes higher electric field magnitudes
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Figure 5.8: Progressive damage (left to right) in muscle and tendon by cell lysis due to
applied electric shock.

as we get closer to the wrist, as illustrated in Fig. 5.7.

While volumes of tissue allow for an even spread of current, constrictions in the current

flow cause local increases of the electric field strength, and consequently, increased local

damage. Several of these cases can be observed in Figure 5.8 and Figure 5.9. For instance,

the inside fold of the elbow presents a region showing cellular lysis; this is likely caused

by the slight bend of the arm in the model making the anterior distal region of the upper

arm the shortest path for current to flow through. The same effect is noticeable in the

axilla. These injury patterns suggest that tissue damage distribution may depend of the

position of the arm during exposure. In the wrist, the restriction to current flow is given

by the larger amount of bone in proportion to muscle tissue; because bone is relatively

less conductive, this causes higher local current densities inside other tissues, resulting

in stronger electric fields and significantly higher damage.

The multiresolution algorithm described in Chapter 3 proved to be valuable tool to

reduce the size of the model, an hence computational overhead, by over 90%, while
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Figure 5.9: Progressive damage (left to right) in muscle and tendon by cell lysis due to
applied electric shock.

keeping an acceptable numerical error.
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Chapter 6

Conclusion

Accurate modeling of bioelectromagnetic problems present a distinctive set of challenges.

Models have complex geometrical features and their size tends to be large compared to the

minimum feature size. Dielectric properties of biological materials tend to be anisotropic

and vary with frequency, temperature, electric field applied, and current density going

through tissue. In the particular case of having metal in contact with living tissue, as in

the case of medical implants, there is a set of local electrochemical reactions that affect

the interaction.

A formulation of the admittance method with potential to address these challenges

has been introduced. The multiresolution scheme presented in Chapter 3 addresses the

concerns regarding treatment of large problem spaces having detailed, small features,

by reducing the voxel count five to ten fold in typical biological models. This speeds

up computations and drastically reduces memory footprint of the numerical codes. For

certain particular problems, for instance, to find the low frequency impedance between

two electrodes in a 1 mm resolution of a full human body, the multiresolution admittance

method proved to be over two orders of magnitude faster than FDTD, while providing

comparably accurate results [40].

An important advantage of the admittance method is that since the model is repre-

sented in terms of a lumped element electrical network, new electrical components can

be arbitrarily included in the network to account for electromagnetic effects not present

in the original model. This is particularly useful in the context of medical devices that

use implanted electrodes, as complex electrochemical interactions between electrodes and

electrolytes can be modeled using electrical networks [2, 32].
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Applications of the proposed method to implanted devices were documented. These

by no means exhaust the capabilities of the multiresolution admittance method.
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